An analogue of McKenzie's theorem for topology lattices of finite algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 109-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is shown that the topology lattice of any finite algebra is isomorphic to the topology lattice of some finite algebra with four unary operations. Further, we present countably many unary algebras whose topology lattices are distributive and nonisomorphic to a topology lattice of any unar (a unar is an algebra with one unary operation).
@article{FPM_2005_11_3_a6,
     author = {A. V. Kartashova},
     title = {An analogue of {McKenzie's} theorem for topology lattices of finite algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {109--117},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a6/}
}
TY  - JOUR
AU  - A. V. Kartashova
TI  - An analogue of McKenzie's theorem for topology lattices of finite algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 109
EP  - 117
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a6/
LA  - ru
ID  - FPM_2005_11_3_a6
ER  - 
%0 Journal Article
%A A. V. Kartashova
%T An analogue of McKenzie's theorem for topology lattices of finite algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 109-117
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a6/
%G ru
%F FPM_2005_11_3_a6
A. V. Kartashova. An analogue of McKenzie's theorem for topology lattices of finite algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 109-117. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a6/

[1] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR

[2] Kartashova A. V., “Analog teoremy Makkenzi dlya reshetok topologii unarnykh algebr”, Mezhdunarodnaya algebraicheskaya konferentsiya, posvyaschennaya 250-letiyu Moskovskogo universiteta, Tezisy dokladov, M., 2004, 65–66

[3] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[4] Berman J., “On the congruence lattices of unary algebras”, Proc. Amer. Math. Soc., 36:1 (1972), 34–38 | DOI | MR | Zbl

[5] Johnsson J., Seifert R. L., A survey of multi-unary algebra, Mimeographed seminar notes, U. C. Berkeley, 1967

[6] Kartashova A. V., “On lattices of topologies of unary algebras”, J. Math. Sci., 114:2 (2003), 1086–1118 | DOI | MR | Zbl