Factorization of loop algebras over $\mathrm{so}(4)$ and integrable nonlinear differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 79-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider factoring subalgebras for loop algebras over $\mathrm{so}(4)$. Given a factoring subalgebra, we find (in terms of coefficients of commutator relations) an explicit form of (1) the corresponding system of the chiral field equation type, (2) the corresponding two-spin model of the Landau–Lifshitz equation, and (3) the corresponding Hamiltonian system of ordinary differential equations with homogeneous quadratic Hamiltonian and linear $\mathrm{so}(4)$-Poisson brackets.
@article{FPM_2005_11_3_a4,
author = {O. V. Efimovskaya},
title = {Factorization of loop algebras over $\mathrm{so}(4)$ and integrable nonlinear differential equations},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {79--94},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a4/}
}
TY - JOUR
AU - O. V. Efimovskaya
TI - Factorization of loop algebras over $\mathrm{so}(4)$ and integrable nonlinear differential equations
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2005
SP - 79
EP - 94
VL - 11
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a4/
LA - ru
ID - FPM_2005_11_3_a4
ER -
%0 Journal Article
%A O. V. Efimovskaya
%T Factorization of loop algebras over $\mathrm{so}(4)$ and integrable nonlinear differential equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 79-94
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a4/
%G ru
%F FPM_2005_11_3_a4
O. V. Efimovskaya. Factorization of loop algebras over $\mathrm{so}(4)$ and integrable nonlinear differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 79-94. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a4/