Steinberg unitary Lie conformal algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 135-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study Steinberg unitary Lie conformal algebras, which are universal central extensions of unitary Lie conformal algebras. We describe the kernels of these extensions by means of skew-dihedral homology.
@article{FPM_2005_11_2_a9,
     author = {A. V. Mikhalev and I. A. Pinchuk},
     title = {Steinberg unitary {Lie} conformal algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--155},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a9/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - I. A. Pinchuk
TI  - Steinberg unitary Lie conformal algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 135
EP  - 155
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a9/
LA  - ru
ID  - FPM_2005_11_2_a9
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A I. A. Pinchuk
%T Steinberg unitary Lie conformal algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 135-155
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a9/
%G ru
%F FPM_2005_11_2_a9
A. V. Mikhalev; I. A. Pinchuk. Steinberg unitary Lie conformal algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 135-155. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a9/

[1] Mikhalëv A. V., Pinchuk I. A., “Konformnye algebry Steinberga”, Mat. sb., 196:5 (2005), 32–52 | MR

[2] Mikhalëv A. V., Pinchuk I. A., “Universalnye tsentralnye rasshireniya konformnykh algebr Li”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2005, no. 1, 26–31 | MR | Zbl

[3] Khamfris Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[4] Allison B. N., Faulkner J. R., “Nonassociative coefficient algebras for Steinberg unitary Lie algebras”, J. Algebra, 161 (1993), 1–19 | DOI | MR | Zbl

[5] Bokut L. A., Fong Y., Ke W.-F., “Gröbner–Shirshov bases and composition lemma for associative conformal algebras: an example”, Contemp. Math., 264 (2000), 63–90 | MR | Zbl

[6] Kac V., Vertex Algebras for Beginners, University Lecture Series, 10, AMS, Providence, RI, 1996 | MR | Zbl

[7] Kasser C., “Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra”, J. Pure Appl. Algebra, 34 (1984), 265–275 | DOI | MR

[8] Kasser C., Loday J. L., “Extensions centrales d'algèbres de Lie”, Ann. Inst. Fourier, 32 (1982), 119–142 | MR

[9] Yun Gao, “Steinberg Lie algebras and skew-dihedral homology”, J. Algebra, 179 (1996), 261–304 | DOI | MR | Zbl