Steinberg unitary Lie conformal algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 135-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study Steinberg unitary Lie conformal algebras, which are universal central extensions of unitary Lie conformal algebras. We describe the kernels of these extensions by means of skew-dihedral homology.
@article{FPM_2005_11_2_a9,
     author = {A. V. Mikhalev and I. A. Pinchuk},
     title = {Steinberg unitary {Lie} conformal algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--155},
     year = {2005},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a9/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - I. A. Pinchuk
TI  - Steinberg unitary Lie conformal algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 135
EP  - 155
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a9/
LA  - ru
ID  - FPM_2005_11_2_a9
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A I. A. Pinchuk
%T Steinberg unitary Lie conformal algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 135-155
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a9/
%G ru
%F FPM_2005_11_2_a9
A. V. Mikhalev; I. A. Pinchuk. Steinberg unitary Lie conformal algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 135-155. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a9/

[1] Mikhalëv A. V., Pinchuk I. A., “Konformnye algebry Steinberga”, Mat. sb., 196:5 (2005), 32–52 | MR

[2] Mikhalëv A. V., Pinchuk I. A., “Universalnye tsentralnye rasshireniya konformnykh algebr Li”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2005, no. 1, 26–31 | MR | Zbl

[3] Khamfris Dzh., Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[4] Allison B. N., Faulkner J. R., “Nonassociative coefficient algebras for Steinberg unitary Lie algebras”, J. Algebra, 161 (1993), 1–19 | DOI | MR | Zbl

[5] Bokut L. A., Fong Y., Ke W.-F., “Gröbner–Shirshov bases and composition lemma for associative conformal algebras: an example”, Contemp. Math., 264 (2000), 63–90 | MR | Zbl

[6] Kac V., Vertex Algebras for Beginners, University Lecture Series, 10, AMS, Providence, RI, 1996 | MR | Zbl

[7] Kasser C., “Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra”, J. Pure Appl. Algebra, 34 (1984), 265–275 | DOI | MR

[8] Kasser C., Loday J. L., “Extensions centrales d'algèbres de Lie”, Ann. Inst. Fourier, 32 (1982), 119–142 | MR

[9] Yun Gao, “Steinberg Lie algebras and skew-dihedral homology”, J. Algebra, 179 (1996), 261–304 | DOI | MR | Zbl