On relatively aspherical presentations and their central extensions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 115-125
Voir la notice de l'article provenant de la source Math-Net.Ru
Under the condition of asphericity of a quotient group $G/\bar N_R$, mutual commutants of the form $[\bar N_R, G]$ in hyperbolic groups $G$ are investigated together with the structure of central subgroups $\bar N_R/[\bar N_R, G]$ in central extensions $G/[\bar N_R, G]$ of $G/\bar N_R$. In particular, quotients of the form $G/[g^m,G]$ are considered, where $g$ is an element of infinite order from a hyperbolic group $G$ and $m$ is sufficiently large (depending on $g$).
@article{FPM_2005_11_2_a7,
author = {O. V. Kulikova},
title = {On relatively aspherical presentations and their central extensions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {115--125},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a7/}
}
O. V. Kulikova. On relatively aspherical presentations and their central extensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 115-125. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a7/