On relatively aspherical presentations and their central extensions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 115-125

Voir la notice de l'article provenant de la source Math-Net.Ru

Under the condition of asphericity of a quotient group $G/\bar N_R$, mutual commutants of the form $[\bar N_R, G]$ in hyperbolic groups $G$ are investigated together with the structure of central subgroups $\bar N_R/[\bar N_R, G]$ in central extensions $G/[\bar N_R, G]$ of $G/\bar N_R$. In particular, quotients of the form $G/[g^m,G]$ are considered, where $g$ is an element of infinite order from a hyperbolic group $G$ and $m$ is sufficiently large (depending on $g$).
@article{FPM_2005_11_2_a7,
     author = {O. V. Kulikova},
     title = {On relatively aspherical presentations and their central extensions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a7/}
}
TY  - JOUR
AU  - O. V. Kulikova
TI  - On relatively aspherical presentations and their central extensions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 115
EP  - 125
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a7/
LA  - ru
ID  - FPM_2005_11_2_a7
ER  - 
%0 Journal Article
%A O. V. Kulikova
%T On relatively aspherical presentations and their central extensions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 115-125
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a7/
%G ru
%F FPM_2005_11_2_a7
O. V. Kulikova. On relatively aspherical presentations and their central extensions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 115-125. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a7/