Extremal problems for linear functionals on the Tchebycheff spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 87-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of the Tchebycheff spaces (generalizing the space of algebraic polynomials) and extremal problems related to them began one and a half centuries ago. Lately, many facts of the approximation theory were understood and reinterpreted from the point of view of general principles of the theory of extremum and convex duality. This approach not only allowed to prove the previously known results for algebraic polynomials and generalized polynomials in a unified way, but also enabled obtaining new results. In this paper, we work out this direction with a special attention to the optimal recovery problems.
@article{FPM_2005_11_2_a5,
     author = {V. B. Demidovich and G. G. Magaril-Il'yaev and V. M. Tikhomirov},
     title = {Extremal problems for linear functionals on the {Tchebycheff} spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a5/}
}
TY  - JOUR
AU  - V. B. Demidovich
AU  - G. G. Magaril-Il'yaev
AU  - V. M. Tikhomirov
TI  - Extremal problems for linear functionals on the Tchebycheff spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 87
EP  - 100
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a5/
LA  - ru
ID  - FPM_2005_11_2_a5
ER  - 
%0 Journal Article
%A V. B. Demidovich
%A G. G. Magaril-Il'yaev
%A V. M. Tikhomirov
%T Extremal problems for linear functionals on the Tchebycheff spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 87-100
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a5/
%G ru
%F FPM_2005_11_2_a5
V. B. Demidovich; G. G. Magaril-Il'yaev; V. M. Tikhomirov. Extremal problems for linear functionals on the Tchebycheff spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 87-100. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a5/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Gostekhizdat, M., 1965

[2] Bernshtein S. N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov”, Zapiski Imp. Khark. un-ta, 4, 1913, 1–8

[3] Bernshtein S. N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, GONTI, M.–L., 1937

[4] Voronovskaya E. V., Metod funktsionalov i ego prilozheniya, LEIS, L., 1963

[5] Demidovich V. B., Priblizhënnye vychisleniya s pomoschyu obobschënnykh polinomov iz chebyshëvskikh prostranstv: chebyshëvskie obobschënnye polinomy, Izd-vo Mosk. un-ta, M., 1990

[6] Demidovich V. B., Priblizhënnye vychisleniya s pomoschyu obobschënnykh polinomov iz chebyshëvskikh prostranstv: prostoe integrirovanie, kratnoe integrirovanie, formuly teilorovskogo tipa, Izd-vo Mosk. un-ta, M., 1994

[7] Demidovich V. B., Magaril-Ilyaev G. G., Tikhomirov V. M., “Ob ekstremumakh lineinykh funktsionalov na konechnomernykh prostranstvakh”, Uspekhi mat. nauk, 55:4 (2000), 133–134 | MR | Zbl

[8] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[9] Zinger M. Ya., Elementy differentsialnoi teorii chebyshëvskikh priblizhenii, Nauka, M., 1975 | MR | Zbl

[10] Zolotarëv E. I., Ob odnom voprose o naimenshikh velichinakh, Dissertatsiya, Sankt-Peterburgsk. un-t, 1868; Золотарëв Е. И., Собр. соч., Т. II, АН СССР, Л., 1932, 130–166

[11] Zolotarëv E. I., “Prilozhenie ellipticheskikh funktsii k voprosam o funktsiyakh, naimenee uklonyayuschikhsya ot nulya”, Izvestiya Sankt-Peterburgsk. Akad. Nauk, XXX:5 (1877); Золотарëв Е. И., Собр. соч., Т. II, АН СССР, Л., 1932, 1–59

[12] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[13] Karlin S., Stadden V., Chebyshëvskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR

[14] Krein M. G., Nudelman A. A., Problemy momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[15] Magaril-Ilyaev G. G., Osipenko K. Yu., Tikhomirov V. M., “Optimalnoe vosstanovlenie i teoriya ekstremuma”, Dokl. RAN, 379:2 (2001), 161–164 | MR

[16] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2002

[17] Markov A. A., “Ob odnom voprose D. I. Mendeleeva”, Izvestiya Sankt-Peterburgsk. Akad. Nauk, LXII (1889), 1–24; Марков А. А., Избр. труды, АН СССР, М.–Л., 1948, 57–75

[18] Markov V. A., O funktsiyakh, naimenee uklonyayuschikhsya ot nulya v dannom promezhutke, Sankt-Peterburgsk. un-t, 1892

[19] Polia G., Sege G., Zadachi i teoremy iz analiza: chast vtoraya, Nauka, M., 1978 | MR

[20] Psheborskii A. P., “O nekotorykh polinomakh, naimenee uklonyayuschikhsya ot nulya v dannom promezhutke”, Soobsch. Khark. mat. obsch-va, XIV:1–2 (1913), 65–80

[21] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[22] Chebyshëv P. L., “O funktsiyakh, malo uklonyayuschikhsya ot nulya pri nekotorykh velichinakh peremennoi”, Prilozh. k Izvestiyam Sankt-Peterburgsk. Akad. Nauk, XL (1881), 1–15; Чебышëв П. Л., Собр. соч., Т. II, АН СССР, M.–Л., 1947, 335–356

[23] Akhiezer N., “Über einige Funktionen, die in gegebenen Intervallen am wenigsten von Null abweichen”, Izv. Kazansk. fiz.-mat. obsch-va, III (1928), 1–69

[24] Magaril-Il'yaev G., Osipenko K., Tikhomirov V., “Optimal recovery and extremum theory”, Comput. Math. Funct. Theory, 2:1 (2002), 87–112 | MR

[25] Nürnberger G., Approximation by Spline Functions, Springer, Berlin, 1989 | MR | Zbl

[26] Pólia G., “On the mean-value theorem corresponding to a given linear differential equations”, Trans. Amer. Math. Soc., 24 (1924), 312–324 | DOI

[27] Tchebycheff P., “Théorie des mécanismes connus sous le nom de parallélogrammes”, Mémoires présentés à l'Acad. Imp. des Sci. de St.-Pétersbourg par divers savants, 7, 1853, 539–568; Chebyshëv P. L., Sobr. soch., T. II, AN SSSR, M.–L., 1947, 23–51

[28] Tchebycheff P., “Sur les questions de minima qui se rattachent à la represéntation approximative des fonctions”, Mémoires présentés à l'Acad. Imp. des Sci. de St.-Pétersbourg par divers savants, 7, 1857, 1–91; Chebyshëv P. L., Sobr. soch., T. II, AN SSSR, M.–L., 1947, 151–235

[29] Tikhomirov V., “Optimal recovery and extremum theory”, Approximation Theory (A Volume Dedicated to Blagovest Sendov), DARBA, Sofia, 2002, 374–396 | MR | Zbl