Action-type axiomatizable classes of group representations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 73-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper adjoins the book of B. I. Plotkin and S. M. Vovsi Varieties of Representations of Groups (Zinatne, Riga (1983)) and turns to be, in a sense, its continuation. In the book, the varieties of representations have been considered. As a matter of fact, the varieties under consideration are action-type varieties. This paper studies other classes of representations, axiomatizable in a special action-type logic.
@article{FPM_2005_11_2_a4,
     author = {A. A. Gvaramiya and B. I. Plotkin},
     title = {Action-type axiomatizable classes of group representations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {73--85},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a4/}
}
TY  - JOUR
AU  - A. A. Gvaramiya
AU  - B. I. Plotkin
TI  - Action-type axiomatizable classes of group representations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 73
EP  - 85
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a4/
LA  - ru
ID  - FPM_2005_11_2_a4
ER  - 
%0 Journal Article
%A A. A. Gvaramiya
%A B. I. Plotkin
%T Action-type axiomatizable classes of group representations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 73-85
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a4/
%G ru
%F FPM_2005_11_2_a4
A. A. Gvaramiya; B. I. Plotkin. Action-type axiomatizable classes of group representations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 73-85. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a4/

[1] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[2] Plotkin B. I., Vovsi S. M., Mnogoobraziya predstavlenii grupp: Obschaya teoriya, svyazi i prilozheniya, Zinatne, Riga, 1983 | MR | Zbl

[3] Gratzer G., Lakser H., “A note on the implicational class generated by a class of structures”, Can. Math. Bull., 16:4 (1974), 603–605 | MR

[4] Gvaramia A., “Maltsev's theorem on quasi-varieties for multi-sorted algebras”, Algebra and Discrete Mathematics, Riga, 1984, 33–45

[5] Plotkin B. I., Tsurkov A., Action-type algebraic geometry in group representations, Preprint