Action-type axiomatizable classes of group representations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 73-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper adjoins the book of B. I. Plotkin and S. M. Vovsi Varieties of Representations of Groups (Zinatne, Riga (1983)) and turns to be, in a sense, its continuation. In the book, the varieties of representations have been considered. As a matter of fact, the varieties under consideration are action-type varieties. This paper studies other classes of representations, axiomatizable in a special action-type logic.
@article{FPM_2005_11_2_a4,
     author = {A. A. Gvaramiya and B. I. Plotkin},
     title = {Action-type axiomatizable classes of group representations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {73--85},
     year = {2005},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a4/}
}
TY  - JOUR
AU  - A. A. Gvaramiya
AU  - B. I. Plotkin
TI  - Action-type axiomatizable classes of group representations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 73
EP  - 85
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a4/
LA  - ru
ID  - FPM_2005_11_2_a4
ER  - 
%0 Journal Article
%A A. A. Gvaramiya
%A B. I. Plotkin
%T Action-type axiomatizable classes of group representations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 73-85
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a4/
%G ru
%F FPM_2005_11_2_a4
A. A. Gvaramiya; B. I. Plotkin. Action-type axiomatizable classes of group representations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 73-85. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a4/

[1] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[2] Plotkin B. I., Vovsi S. M., Mnogoobraziya predstavlenii grupp: Obschaya teoriya, svyazi i prilozheniya, Zinatne, Riga, 1983 | MR | Zbl

[3] Gratzer G., Lakser H., “A note on the implicational class generated by a class of structures”, Can. Math. Bull., 16:4 (1974), 603–605 | MR

[4] Gvaramia A., “Maltsev's theorem on quasi-varieties for multi-sorted algebras”, Algebra and Discrete Mathematics, Riga, 1984, 33–45

[5] Plotkin B. I., Tsurkov A., Action-type algebraic geometry in group representations, Preprint