On the wedge product and coprime coalgebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 45-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The wedge product of subcoalgebras of a coalgebra can be used to define coprime coalgebras. On the other hand, coprime elements in the big lattice of preradicals in module categories also lead to the definition of coprime modules. Considering a coalgebra $C$ as a module over its dual algebra $C^{*}$, this yields another notion of coprimeness for coalgebras. Under special conditions, the two definitions coincide.
@article{FPM_2005_11_2_a2,
     author = {I. E. Wijayanti},
     title = {On the wedge product and coprime coalgebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {45--49},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a2/}
}
TY  - JOUR
AU  - I. E. Wijayanti
TI  - On the wedge product and coprime coalgebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 45
EP  - 49
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a2/
LA  - ru
ID  - FPM_2005_11_2_a2
ER  - 
%0 Journal Article
%A I. E. Wijayanti
%T On the wedge product and coprime coalgebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 45-49
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a2/
%G ru
%F FPM_2005_11_2_a2
I. E. Wijayanti. On the wedge product and coprime coalgebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 45-49. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a2/

[1] Bican L., Jambor P., Kepka T., Nemec P., “Prime and coprime modules”, Fund. Math., 107 (1980), 33–44 | MR

[2] Brzeziński T., Wisbauer R., Corings and Comodules, Cambridge University Press, 2003 | MR | Zbl

[3] Jara P., Merino L. M., Ruiz J. F., Prime Path Coalgebras, Preprint, 2003

[4] Nekooei R., Torkzadeh L., “Topology on coalgebras”, Bull. Iranian Math. Soc., 27:2 (2001), 45–63 | MR

[5] Raggi F., Montes J. R., Wisbauer R., Coprime Preradicals and Modules, Preprint, 2003 | Zbl

[6] Sweedler M. E., Hopf Algebra, Benjamin, New York, 1969 | MR | Zbl

[7] Wijayanti I. E., “Coprime coalgebras and dual algebras”, Int. Conf. on Algebras, Modules and Rings, Lissabon, 2003

[8] Wisbauer R., Grundlagen der Modul- und Ringtheorie,, Verlag Reinhard Fischer, München, 1988 | MR | Zbl