Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_2_a12, author = {V. A. Stukopin}, title = {The quantum double of the {Yangian} of the {Lie} superalgebra $A(m,n)$ and computation of the universal $R$-matrix}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {185--208}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a12/} }
TY - JOUR AU - V. A. Stukopin TI - The quantum double of the Yangian of the Lie superalgebra $A(m,n)$ and computation of the universal $R$-matrix JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 185 EP - 208 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a12/ LA - ru ID - FPM_2005_11_2_a12 ER -
%0 Journal Article %A V. A. Stukopin %T The quantum double of the Yangian of the Lie superalgebra $A(m,n)$ and computation of the universal $R$-matrix %J Fundamentalʹnaâ i prikladnaâ matematika %D 2005 %P 185-208 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a12/ %G ru %F FPM_2005_11_2_a12
V. A. Stukopin. The quantum double of the Yangian of the Lie superalgebra $A(m,n)$ and computation of the universal $R$-matrix. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 2, pp. 185-208. http://geodesic.mathdoc.fr/item/FPM_2005_11_2_a12/
[1] Drinfeld V. G., “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, DAN SSSR, 283:5 (1985), 1060–1064 | MR
[2] Drinfeld V. G., Novaya realizatsiya yangianov i kvantovykh affinnykh algebr, Preprint FTINT. No 30-86, 1986
[3] Drinfeld V. G., “Novaya realizatsiya yangianov i kvantovykh affinnykh algebr”, DAN SSSR, 36 (1988), 212–216 | MR
[4] Stukopin V. A., “O yangianakh superalgebr Li tipa $A(m,n)$”, Funktsion. analiz i ego pril., 28:3 (1994), 85–88 | MR | Zbl
[5] Tolstoi V. N., Khoroshkin S. M., “Universalnaya $R$-matritsa dlya kvantovykh neskruchennykh affinnykh algebr Li”, Funktsion. analiz i ego pril., 26:3 (1992), 85–88 | MR | Zbl
[6] Chari V., Pressley A., “Yangians and $R$-matrices”, Enseignment Math., 36 (1990), 267–302 | MR | Zbl
[7] Chari V., Pressley A., “Fundamental representations of Yangians and singularities of $R$-matrices”, J. Reine Angew. Math., 417 (1991), 87–128 | MR | Zbl
[8] Chari V., Pressley A., A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1995 | MR
[9] Drinfeld V., “Quantum groups”, Proc. Int. Cong. Math., Vol. 1, Berkeley, 1986, 798–820 | MR
[10] Frappat L., Sorba P., Dictionary on Lie Superalgebras, , 1996 arXiv: hep-th/9607161
[11] Kac V., “A sketch of Lie superalgebra theory”, Comm. Math. Phys., 53 (1977), 31–64 | DOI | MR | Zbl
[12] Khoroshkin S. M., Tolstoy V. N., “Yangian double”, Lett. Math. Phys., 36 (1996), 373–402 | DOI | MR | Zbl
[13] Levendorskii S., “On generators and defining relations of Yangians”, J. Geom. Phys., 12 (1993), 1–11 | DOI | MR
[14] Levendorskii S., Soibelman Ya., Stukopin V., “Quantum Weyl group and universal $R$-matrix for quantum affine Lie algebra $A^{(1)}_1$”, Lett. Math. Phys., 27 (1993), 1–11 | DOI | MR
[15] Nazarov M., “Quantum Berezinian and the classical Capelly identity”, Lett. Math. Phys., 21 (1991), 123–131 | DOI | MR | Zbl
[16] Nazarov M., “Yangian of the queer Lie superalgebra”, Comm. Math. Phys., 208 (1999), 195–223 | DOI | MR | Zbl
[17] Smirnov F., “Dynamical symmetries of massive integrable models”, Internat. J. Modern Phys. A, 7 (1992), 813–838, suppl. 1B | DOI | MR
[18] Stukopin V., “Representation theory and doubles of Yangians of classical Lie super-algebras”, Asymptotic Combinatorics with Applications to Math. Phys., Kluwer, Dordrecht, 2002, 255–265 | MR | Zbl