Geodesics of a~two-dimensional pseudo-Riemannian metric and accuracy control of numerical simulations of geodesics
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 205-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the equation of nonisotropic geodesics of a two-dimensional pseudo-Riemannian metric admits substantial simplification in isotropic coordinates.
@article{FPM_2005_11_1_a8,
     author = {\`E. R. Rozendorn},
     title = {Geodesics of a~two-dimensional {pseudo-Riemannian} metric and accuracy control of numerical simulations of geodesics},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {205--209},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a8/}
}
TY  - JOUR
AU  - È. R. Rozendorn
TI  - Geodesics of a~two-dimensional pseudo-Riemannian metric and accuracy control of numerical simulations of geodesics
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 205
EP  - 209
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a8/
LA  - ru
ID  - FPM_2005_11_1_a8
ER  - 
%0 Journal Article
%A È. R. Rozendorn
%T Geodesics of a~two-dimensional pseudo-Riemannian metric and accuracy control of numerical simulations of geodesics
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 205-209
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a8/
%G ru
%F FPM_2005_11_1_a8
È. R. Rozendorn. Geodesics of a~two-dimensional pseudo-Riemannian metric and accuracy control of numerical simulations of geodesics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 205-209. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a8/

[1] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Fizmatgiz, Nevskii dialekt, M., SPb., 2001

[2] Lamburt V. G., Rozendorn E. R., Sokolov D. D., Tutubalin V. N., “Geodezicheskie so sluchainoi kriviznoi na rimanovykh i psevdorimanovykh mnogoobraziyakh”, Trudy geometr. seminara, 24, KGU, Kazan, 2003, 99–106

[3] Pogorelov A. V., Lektsii po differentsialnoi geometrii, KhGU, Kharkov, 1967

[4] Stepanov V. V., Kurs differentsialnykh uravnenii, Fizmatgiz, M., 1959 | Zbl

[5] Eizenkhart L. P., Rimanova geometriya, GITTL, M., 1948