On $W$-geometry of Toda systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 195-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe $W$-geometry of two-dimensional Toda systems associated with the Lie algebra $C_n$.
@article{FPM_2005_11_1_a7,
     author = {O. V. Il'in},
     title = {On $W$-geometry of {Toda} systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {195--203},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a7/}
}
TY  - JOUR
AU  - O. V. Il'in
TI  - On $W$-geometry of Toda systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 195
EP  - 203
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a7/
LA  - ru
ID  - FPM_2005_11_1_a7
ER  - 
%0 Journal Article
%A O. V. Il'in
%T On $W$-geometry of Toda systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 195-203
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a7/
%G ru
%F FPM_2005_11_1_a7
O. V. Il'in. On $W$-geometry of Toda systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 195-203. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a7/

[1] Goto M., Grosskhans F., Poluprostye algebry Li, Novokuznetsk, 1998

[2] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Noveishie dostizheniya, 24, VINITI, M., 1984, 81–180 | MR

[3] Leznov A. N., Savelev M. V., Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl

[4] Gervais J., Matsuo Y., “Classical $A_n$- W-geometry”, Comm. Math. Phys., 152:2 (1993), 317–368 | DOI | MR | Zbl

[5] Gervais J., Matsuo Y., “$W$-geometries”, Phys. Lett. B, 274 (1992) | MR

[6] Gervais J., Saveliev M., $W$-geometry of the Toda systems associated with non-exceptional simple Lie algebras, LPTENS93/47