Two-dimensional pseudo-Riemannian metrics reconstructed by a~given curvature
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 85-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of reconstruction of a two-dimensional, pseudo-Riemannian metric in isotropic coordinates by a given Gaussian curvature is considered. In particular, we present sufficient conditions for the possibility of reconstruction such a metric in a coordinate quadrant. Possible applications of results obtained are discussed.
@article{FPM_2005_11_1_a2,
     author = {\`E. R. Rozendorn and D. D. Sokolov},
     title = {Two-dimensional {pseudo-Riemannian} metrics reconstructed by a~given curvature},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {85--92},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a2/}
}
TY  - JOUR
AU  - È. R. Rozendorn
AU  - D. D. Sokolov
TI  - Two-dimensional pseudo-Riemannian metrics reconstructed by a~given curvature
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 85
EP  - 92
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a2/
LA  - ru
ID  - FPM_2005_11_1_a2
ER  - 
%0 Journal Article
%A È. R. Rozendorn
%A D. D. Sokolov
%T Two-dimensional pseudo-Riemannian metrics reconstructed by a~given curvature
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 85-92
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a2/
%G ru
%F FPM_2005_11_1_a2
È. R. Rozendorn; D. D. Sokolov. Two-dimensional pseudo-Riemannian metrics reconstructed by a~given curvature. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 85-92. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a2/

[1] Artykbaev A., Sokolov D. D., Geometriya v tselom v ploskom prostranstve-vremeni, Fan, Tashkent, 1991 | Zbl

[2] Lamburt V. G., Rozendorn E. R., Sokolov D. D., Tutubalin V. N., “Geodezicheskie so sluchainoi kriviznoi na rimanovykh i psevdorimanovykh mnogoobraziyakh”, Trudy geometr. seminara, 24, KGU, Kazan, 2003, 99–106

[3] Penrouz R., Struktura prostranstva-vremeni, Merkurii, Cherepovets, 2000

[4] Pogorelov A. V., Lektsii po differentsialnoi geometrii, KhGU, Kharkov, 1967

[5] Poznyak E. G., “Geometricheskie issledovaniya, svyazannye s uravneniem $z_{xy}=\sin z$”, Itogi nauki i tekhn. Ser. Probl. geom., 8, 1977, 225–241 | MR | Zbl

[6] Uizem Dzh., Lineinye i nelineinye volny, Nauka, M., 1977