On infinite polygons of the Lobachevsky plane
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 265-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two theorems about properties of infinite polygons on the Lobachevsky plane are proved.
@article{FPM_2005_11_1_a14,
     author = {Zh. Kaidasov},
     title = {On infinite polygons of the {Lobachevsky} plane},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {265--269},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a14/}
}
TY  - JOUR
AU  - Zh. Kaidasov
TI  - On infinite polygons of the Lobachevsky plane
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 265
EP  - 269
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a14/
LA  - ru
ID  - FPM_2005_11_1_a14
ER  - 
%0 Journal Article
%A Zh. Kaidasov
%T On infinite polygons of the Lobachevsky plane
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 265-269
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a14/
%G ru
%F FPM_2005_11_1_a14
Zh. Kaidasov. On infinite polygons of the Lobachevsky plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 265-269. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a14/

[1] Aleksandrov A. D., “O geometrii Lobachevskogo”, Matematika v shkole, 1993, no. 2, 2–7

[2] Gindikin S., “Volshebnyi mir Anri Puankare”, Kvant, 1976, no. 3, 9–17

[3] Kadomtsev S. B., Geometriya Lobachevskogo i fizika, Novoe v zhizni, nauke, tekhnike. Ser. Matematika, kibernetika, 8, Znanie, M., 1984, 64 pp. | MR | Zbl