On the multiply connectedness of level lines $m\pi$ of $n$-soliton solutions of the sine-Gordon equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 255-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of level lines $z=m\pi$ of multi-soliton solutions of the sine-Gordon equation is considered.
@article{FPM_2005_11_1_a13,
     author = {O. D. Viktorova},
     title = {On the multiply connectedness of level lines $m\pi$ of $n$-soliton solutions of the {sine-Gordon} equation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {255--263},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a13/}
}
TY  - JOUR
AU  - O. D. Viktorova
TI  - On the multiply connectedness of level lines $m\pi$ of $n$-soliton solutions of the sine-Gordon equation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 255
EP  - 263
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a13/
LA  - ru
ID  - FPM_2005_11_1_a13
ER  - 
%0 Journal Article
%A O. D. Viktorova
%T On the multiply connectedness of level lines $m\pi$ of $n$-soliton solutions of the sine-Gordon equation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 255-263
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a13/
%G ru
%F FPM_2005_11_1_a13
O. D. Viktorova. On the multiply connectedness of level lines $m\pi$ of $n$-soliton solutions of the sine-Gordon equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 255-263. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a13/

[1] Gilbert D., Osnovaniya geometrii, M.–L., 1948

[2] Pelinovskii E. N., “Nekotorye tochnye metody v teorii nelineinykh voln”, Izv. vyssh. uchebn. zaved. Ser. radiofizika, 1976, no. 5, 883–901 | MR

[3] Poznyak E. G., “Geometricheskaya interpretatsiya regulyarnykh reshenii uravneniya $z_{xy}=\sin z$”, Differents. uravn., 15:7 (1979), 1332–1336 | MR | Zbl

[4] Poznyak E. G., Popov A. G., “Geometriya uravneniya $\sin$-Gordona”, Itogi nauki i tekhn. Ser. Probl. geometrii, 23, VINITI, M., 1991, 99–130 | MR

[5] Chebyshëv P. L., “O kroike odezhdy”, Uspekhi mat. nauk, 1:2 (1946), 38–42 | MR | Zbl