On the multiply connectedness of level lines $m\pi$ of $n$-soliton solutions of the sine-Gordon equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 255-263
The behavior of level lines $z=m\pi$ of multi-soliton solutions of the sine-Gordon equation is considered.
@article{FPM_2005_11_1_a13,
author = {O. D. Viktorova},
title = {On the multiply connectedness of level lines $m\pi$ of $n$-soliton solutions of the {sine-Gordon} equation},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {255--263},
year = {2005},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a13/}
}
TY - JOUR AU - O. D. Viktorova TI - On the multiply connectedness of level lines $m\pi$ of $n$-soliton solutions of the sine-Gordon equation JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 255 EP - 263 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a13/ LA - ru ID - FPM_2005_11_1_a13 ER -
O. D. Viktorova. On the multiply connectedness of level lines $m\pi$ of $n$-soliton solutions of the sine-Gordon equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 255-263. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a13/
[1] Gilbert D., Osnovaniya geometrii, M.–L., 1948
[2] Pelinovskii E. N., “Nekotorye tochnye metody v teorii nelineinykh voln”, Izv. vyssh. uchebn. zaved. Ser. radiofizika, 1976, no. 5, 883–901 | MR
[3] Poznyak E. G., “Geometricheskaya interpretatsiya regulyarnykh reshenii uravneniya $z_{xy}=\sin z$”, Differents. uravn., 15:7 (1979), 1332–1336 | MR | Zbl
[4] Poznyak E. G., Popov A. G., “Geometriya uravneniya $\sin$-Gordona”, Itogi nauki i tekhn. Ser. Probl. geometrii, 23, VINITI, M., 1991, 99–130 | MR
[5] Chebyshëv P. L., “O kroike odezhdy”, Uspekhi mat. nauk, 1:2 (1946), 38–42 | MR | Zbl