A differential-geometric criterion of the kinematic integrability of nonlinear differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 247-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem on the existence of a $G$-representation and a differential-geometric criterion of the kinematic integrability for nonlinear differential equations from the $\Lambda^2$-$G$-classes is proved. Examples of zero-curvature representations and metrics for some equations of mathematical physics are presented.
@article{FPM_2005_11_1_a12,
     author = {D. V. Tikhomirov and S. A. Zadadaev},
     title = {A differential-geometric criterion of the kinematic integrability of nonlinear differential equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {247--254},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a12/}
}
TY  - JOUR
AU  - D. V. Tikhomirov
AU  - S. A. Zadadaev
TI  - A differential-geometric criterion of the kinematic integrability of nonlinear differential equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 247
EP  - 254
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a12/
LA  - ru
ID  - FPM_2005_11_1_a12
ER  - 
%0 Journal Article
%A D. V. Tikhomirov
%A S. A. Zadadaev
%T A differential-geometric criterion of the kinematic integrability of nonlinear differential equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 247-254
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a12/
%G ru
%F FPM_2005_11_1_a12
D. V. Tikhomirov; S. A. Zadadaev. A differential-geometric criterion of the kinematic integrability of nonlinear differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 247-254. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a12/

[1] Zadadaev S. A., $\Lambda^2$-predstavleniya uravnenii matematicheskoi fiziki i ikh nekotorye prilozheniya, Diss. $\dots$ kand. fiz.-mat. nauk

[2] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR | Zbl

[3] Malakhovskii V. S., Vvedenie v teoriyu vneshnikh form, Izd-vo Kaliningradskogo un-ta, Kaliningrad, 1980

[4] Poznyak E. G., Popov A. G., “Geometriya Lobachevskogo i uravneniya matematicheskoi fiziki”, DAN, 332:4 (1993), 418–421 | MR | Zbl

[5] Takhtadzhyan L. A., Fadeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl