A differential-geometric criterion of the kinematic integrability of nonlinear differential equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 247-254
A theorem on the existence of a $G$-representation and a differential-geometric criterion of the kinematic integrability for nonlinear differential equations from the $\Lambda^2$-$G$-classes is proved. Examples of zero-curvature representations and metrics for some equations of mathematical physics are presented.
@article{FPM_2005_11_1_a12,
author = {D. V. Tikhomirov and S. A. Zadadaev},
title = {A differential-geometric criterion of the kinematic integrability of nonlinear differential equations},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {247--254},
year = {2005},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a12/}
}
TY - JOUR AU - D. V. Tikhomirov AU - S. A. Zadadaev TI - A differential-geometric criterion of the kinematic integrability of nonlinear differential equations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 247 EP - 254 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a12/ LA - ru ID - FPM_2005_11_1_a12 ER -
%0 Journal Article %A D. V. Tikhomirov %A S. A. Zadadaev %T A differential-geometric criterion of the kinematic integrability of nonlinear differential equations %J Fundamentalʹnaâ i prikladnaâ matematika %D 2005 %P 247-254 %V 11 %N 1 %U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a12/ %G ru %F FPM_2005_11_1_a12
D. V. Tikhomirov; S. A. Zadadaev. A differential-geometric criterion of the kinematic integrability of nonlinear differential equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 247-254. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a12/
[1] Zadadaev S. A., $\Lambda^2$-predstavleniya uravnenii matematicheskoi fiziki i ikh nekotorye prilozheniya, Diss. $\dots$ kand. fiz.-mat. nauk
[2] Kartan A., Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR | Zbl
[3] Malakhovskii V. S., Vvedenie v teoriyu vneshnikh form, Izd-vo Kaliningradskogo un-ta, Kaliningrad, 1980
[4] Poznyak E. G., Popov A. G., “Geometriya Lobachevskogo i uravneniya matematicheskoi fiziki”, DAN, 332:4 (1993), 418–421 | MR | Zbl
[5] Takhtadzhyan L. A., Fadeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl