Pseudospherical surfaces and some problems of mathematical physics
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 227-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, some aspects of the interrelation of Lobachevsky geometry and nonlinear differential equations are discussed.
@article{FPM_2005_11_1_a10,
     author = {A. G. Popov},
     title = {Pseudospherical surfaces and some problems of mathematical physics},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {227--239},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a10/}
}
TY  - JOUR
AU  - A. G. Popov
TI  - Pseudospherical surfaces and some problems of mathematical physics
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 227
EP  - 239
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a10/
LA  - ru
ID  - FPM_2005_11_1_a10
ER  - 
%0 Journal Article
%A A. G. Popov
%T Pseudospherical surfaces and some problems of mathematical physics
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 227-239
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a10/
%G ru
%F FPM_2005_11_1_a10
A. G. Popov. Pseudospherical surfaces and some problems of mathematical physics. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 227-239. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a10/

[1] Kadomtsev S. B., Poznyak E. G., Popov A. G., “Geometriya Lobachevskogo: otkrytie i put v sovremennost”, Priroda, 1993, no. 7, 19–27 | MR

[2] Poznyak E. G., “O regulyarnoi realizatsii v tselom dvumernykh metrik otritsatelnoi krivizny”, DAN SSSR, 170:4 (1966), 786–789 | Zbl

[3] Poznyak E. G., Popov A. G., Uravnenie sinus-Gordona: geometriya i fizika, Znanie, M., 1991 | MR | Zbl

[4] Poznyak E. G., Popov A. G., “Geometriya Lobachevskogo i uravneniya matematicheskoi fiziki”, Dokl. RAN, 332:4 (1993), 418–421 | MR | Zbl

[5] Poznyak E. G., Popov A. G., “Neevklidova geometriya. Formula Gaussa i interpretatsiya differentsialnykh uravnenii v chastnykh proizvodnykh”, Geometriya-2, Itogi nauki i tekhn. Sovremennaya matematika i eë prilozheniya. Tematicheskie obzory, 11, VINITI, M., 2002, 5–23 | MR

[6] Poznyak E. G., Shikin E. V., Differentsialnaya geometriya. Pervoe znakomstvo, Izd-vo Mosk. un-ta, M., 1990, 384 pp. | Zbl

[7] Rozhdestvenskii B. L., “Sistema kvazilineinykh uravnenii teorii poverkhnostei”, DAN SSSR, 143:1 (1962), 132–135

[8] Rozendorn E. R., “Poverkhnosti otritsatelnoi krivizny”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 48, VINITI, M., 1989, 98–195 | MR

[9] Chebyshëv P. L., “O kroike odezhdy”, Uspekhi mat. nauk, 1:2 (1946), 38–42 | MR | Zbl

[10] Beltrami E., “Sulla superficie di rotazione che serve di tipo superficie pseudosferiche”, Giorn. Math., 10 (1872), 12–16, Opera 2

[11] Bianchi L., Lezioni di geometria differenziale, Bologna, 1927

[12] Minding F., “Über die Biegung krummer Flächen”, J. Reine Angew. Math., 18 (1838), 365–368 | DOI | Zbl