Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_1_a1, author = {S. E. Stepanov}, title = {Vanishing theorems in affine, {Riemannian,} and {Lorenz} geometries}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {35--84}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a1/} }
S. E. Stepanov. Vanishing theorems in affine, Riemannian, and Lorenz geometries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 35-84. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a1/
[1] Akivis M. A., Mnogomernaya differentsialnaya geometriya, Izd-vo Kalininskogo un-ta, Kalinin, 1977 | MR
[2] Alekseevskii V. D., Vinogradov A. M., Lychagin V. V., “Osnovnye ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 28, VINITI, M., 1988, 5–289
[3] Aminova A. V., “Gruppy preobrazovanii rimanovykh mnogoobrazii”, Itogi nauki i tekhniki. Problemy geometrii, 22, VINITI, M., 1990, 97–165 | MR
[4] Besse A., Mnogoobraziya Einshteina, Nauka, M., 1990
[5] Bim Dzh., Erlikh P., Globalnaya lorentseva geometriya, Mir, M., 1985 | MR
[6] Volf Dzh., Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR
[7] Gromov M., Znak i geometricheskii smysl krivizny, Udmurtskii un-t, Izhevsk, 1999 | Zbl
[8] Gromol D., Klinberg V., Meir V., Rimanova geometriya v tselom, Mir, M., 1971
[9] Zakharov V. D., Gravitatsionnye volny v teorii tyagoteniya Einshteina, Nauka, M., 1972 | MR
[10] Isaev V. M., Stepanov S. E., “Primery killingovoi i konformno killingovoi form”, Differentsialnaya geometriya mnogoobrazii figur, 2001, no. 32, 52–57 | MR | Zbl
[11] Klishevich V. V., Tyumentsev V. A., “Vektornoe pole K. Yano i tenzornoe pole Yano–Killinga v ploskom prostranstve i prostranstve de Sittera”, Vestn. Omskogo un-ta, 2000, no. 3, 20–21 | MR | Zbl
[12] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR
[13] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981
[14] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981
[15] Kramer D. i dr., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | MR
[16] Mizner Ch., Torn K., Uiller Dzh., Gravitatsiya, T. 2, Mir, M., 1977
[17] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR
[18] Pale R., Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970 | MR
[19] Penrouz R., Struktura prostranstva-vremeni, Mir, M., 1972 | MR
[20] Pogorelov A. V., “Polnye affinno-minimalnye giperpoverkhnosti”, DAN SSSR, 301:6 (1988), 1314–1316 | MR
[21] De Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1956
[22] Rodionov E. D., Slavskii V. V., “Konformnye i odnorangovye deformatsii rimanovykh metrik s ploschadkami nulevoi krivizny na kompaktnom mnogoobrazii”, Trudy konferentsii “ Geometriya i prilozheniya” (13–16 marta 2000 g., Novosibirsk), Izd-vo Novosibirskogo gos. un-ta, Novosibirsk, 2000, 171–182 | MR
[23] Sing Dzh., Obschaya teoriya otnositelnosti, IL, M., 1963
[24] Sinyukova E. N., “O geodezicheskikh otobrazheniyakh nekotorykh spetsialnykh rimanovykh prostranstv”, Mat. zametki, 30:6 (1981), 889–894 | MR | Zbl
[25] Smolnikova M. V., “Ob odnom svoistve rimanovykh mnogoobrazii znakoopredelënnoi sektsionnoi krivizny”, Noveishie problemy teorii polya (1999–2000), Izd-vo KGU, Kazan, 2000, 365–367
[26] Smolnikova M. V., “O globalnoi geometrii garmonicheskikh simmetricheskikh bilineinykh differentsialnykh form”, Trudy Mat. in-ta im. V. A. Steklova, 236, 2002, 328–331 | MR | Zbl
[27] Smolnikova M. V., “Obobschënno rekurrentnoe simmetricheskoe tenzornoe pole”, Izv. vyssh. uchebn. zaved. Ser. Matematika, 2002, no. 5, 48–51 | MR
[28] Smolnikova M. V., Stepanov S. E., “Ob odnom differentsialnom operatore K. Yano”, Tezisy dokladov Mezhdunarodnoi konferentsii po differentsialnym uravneniyam i dinamicheskim sistemam (1–6 iyulya 2002 g., Suzdal), Izd-vo VlGU, Vladimir, 2002, 129–131
[29] Smolnikova M. V., Stepanov S. E., “Fundamentalnye differentsialnye operatory pervogo poryadka na vneshnikh i simmetricheskikh formakh”, Izv. vyssh. uchebn. zaved. Ser. Matematika, 2002, no. 11, 55–60 | MR
[30] Stepanov S. E., “Polya simmetricheskikh tenzorov na kompaktnom rimanovom mnogoobrazii”, Mat. zametki, 52:4 (1992), 85–88 | MR | Zbl
[31] Stepanov S. E., “Tekhnika Bokhnera i kosmologicheskie modeli”, Izv. vyssh. uchebn. zaved. Ser. Fizika, 1993, no. 6, 82–86 | MR
[32] Stepanov S. E., “O primenenii odnoi teoremy P. A. Shirokova v tekhnike Bokhnera”, Izv. vyssh. uchebn. zaved. Ser. Matematika, 1996, no. 9, 53–59 | MR | Zbl
[33] Stepanov S. E., “Ob odnom primenenii teorii predstavlenii grupp v relyativistskoi elektrodinamike”, Izv. vyssh. uchebn. zaved. Ser. Fizika, 1996, no. 5, 90–93 | MR
[34] Stepanov S. E., “O gruppovom podkhode k izucheniyu uravnenii Einshteina i Maksvella”, Teor. i matem. fiz., 111:1 (1997), 32–43 | MR | Zbl
[35] Stepanov S. E., “Formy Killinga na kompaktnom mnogoobrazii s kraem”, Tezisy dokladov Mezhdunarodnogo geometricheskogo seminara im. N. I. Lobachevskogo “Sovremennaya geometriya i teoriya fizicheskikh polei” (4–8 fevralya 1997 g., Kazan), Izd-vo Kazanskogo mat. ob-va, Kazan, 1997, 114
[36] Stepanov S. E., “Tekhnika Bokhnera dlya $m$-mernykh kompaktnykh mnogoobrazii s $\mathrm{SL}(m,R)$-strukturoi”, Algebra i analiz, 10:4 (1998), 192–209 | MR | Zbl
[37] Stepanov S. E., “Vektornoe prostranstvo konformno killingovykh form na rimanovom mnogoobrazii”, Geometriya i topologiya, Zap. nauchn. semin. POMI RAN, 261, 1999, 240–265 | MR | Zbl
[38] Stepanov S. E., “Ob izomorfizme prostranstv konformno killingovykh form”, Differentsialnaya geometriya mnogoobrazii figur, 2000, no. 31, 81–84 | MR | Zbl
[39] Stepanov S. E., “Ob odnom analiticheskom metode obschei teorii otnositelnosti”, Teor. i matem. fiz., 122:3 (2000), 482–496 | MR | Zbl
[40] Stepanov S. E., “Tekhnika Bokhnera dlya fizikov. Vektornye polya”, Lektsionnye zametki po teoreticheskoi i matematicheskoi fizike, T. 2, chast 2, Izd-vo KGU, Kazan, 2000, 245–277
[41] Stepanov S. E., “Ob odnom primenenii teoremy Stoksa v globalnoi rimanovoi geometrii”, Fundam. i prikl. mat., 8:1 (2002), 245–262 | MR | Zbl
[42] Stepanov S. E., “O tenzore Killinga–Yano”, Teor. i matem. fiz., 134:3 (2003), 382–387 | MR | Zbl
[43] Stepanov S. E., Tsyganok I. I., “Vektornoe pole na lorentsevom mnogoobrazii”, Izv. vyssh. uchebn. zaved. Ser. Matematika, 1994, no. 3, 81–83 | MR | Zbl
[44] Trofimov V. V., Fomenko A. T., “Rimanova geometriya”, Itogi nauki i tekhniki. Sovremennaya matematika i eë prilozheniya. Tematicheskie obzory, 76, VINITI, M., 2002, 5–262 | Zbl
[45] Khokking S., Ellis Dzh., Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1977
[46] Khokhlov A. Yu., “O printsipe maksimuma v smysle $L_{p}$”, Dokl. RAN, 348:4 (1996), 452–454 | MR | Zbl
[47] Tsyganok I. I., “Torsoobrazuyuschee vektornoe pole i gruppa affinnykh gomotetii”, Tkani i kvazigruppy, Izd-vo Kalininskogo gos. un-ta, Kalinin, 1988, 114–119 | MR
[48] Tsyganok I. I., “Affinnyi analog metoda Yano–Bokhnera”, Tezisy dokladov Respublikanskoi konferentsii (21–22 sentyabrya 1990 g., Tartu), Izd-vo Tartuskogo un-ta, Tartu, 1990, 76–78
[49] Tsyganok I. I., Affinnaya geometriya vektornykh polei, Avtoreferat diss. $\dots$ kand. fiz.-mat. nauk, Izd-vo MGPI, M., 1990
[50] Tsyganok I. I., “Solenoidalnye vektornye polya na kompaktnom mnogoobrazii”, Tezisy dokladov VI Mezhdunarodnoi konferentsii zhenschin-matematikov (25–30 maya 1998 g., Cheboksary), Izd-vo Cheboksarskogo gos. un-ta, Cheboksary, 1998, 68
[51] Tsyganok I. I., Stepanov S. E., “Tekhnika Bokhnera v affinnoi differentsialnoi geometrii”, Algebraicheskie metody v geometrii, Izd-vo Rossiiskogo un-ta druzhby narodov, M., 1992, 50–55 | Zbl
[52] Tsyganok I. I., Stepanov S. E., “Operator Khodzha na mnogoobrazii s ekviaffinnoi strukturoi”, Differentsialnaya geometriya mnogoobrazii figur, 1996, no. 27, 114–117 | Zbl
[53] Tsyganok I. I., Stepanov S. E., “Ob odnom estestvennom differentsialnom operatore vtorogo poryadka na vneshnikh differentsialnykh formakh”, Trudy rossiiskoi assotsiatsii “ Zhenschiny-matematiki”, 9:1 (2001), 68–71
[54] Chetyrëkhmernaya rimanova geometriya, Seminar Artura Besse 1978/79, Mir, M., 1985 | MR
[55] Shapiro I. S., Olshanetskii M. A., Lektsii po topologii dlya fizikov, Udmurtskii un-t, Izhevsk, 1999
[56] Shapiro Ya. L., “Ob odnom klasse rimanovykh prostranstv”, Trudy seminara po vektornomu i tenzornomu analizu, XII, MGU, M., 1963, 203–212
[57] Shapovalov V. I., “Simmetriya uravnenii Diraka–Foka”, Izv. vyssh. uchebn. zaved. Ser. Fizika, 1975, no. 6, 57–63
[58] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, VO Nauka, Novosibirsk, 1993 | MR | Zbl
[59] Shirokov P. A., Izbrannye raboty po geometrii, Izd-vo KGU, Kazan, 1996, 265–280
[60] Shirokov P. A., Shirokov A. P., Affinnaya differentsialnaya geometriya, Izd-vo fiz.-mat. lit., M., 1959 | MR
[61] Shoke-Bryua I., “Matematicheskie voprosy obschei teorii otnositelnosti”, Uspekhi mat. nauk, 40:6 (1985), 3–39 | MR
[62] Scherbakov R. N., Kurs affinnoi i proektivnoi differentsialnoi geometrii, Izd-vo Tomskogo un-ta, Tomsk, 1960 | MR
[63] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948
[64] Yano K., Bokhner S., Krivizna i chisla Betti, IL, M., 1957 | MR
[65] Affine Differential geometrie, No. 48, Tagungsber. Math. Forschungsinst., Oberwolfach, 1986, 1–24
[66] Akutagawa K., “On spacelike hypersurfaces with constant mean curvature in the de Sitter space”, Math. Z., 196 (1987), 13–19 | DOI | MR | Zbl
[67] Aledo J. A., Alias L. J., “Curvature properties of compact spacelike hypersurfaces in de Sitter space”, Differential Geom. Appl., 14:2 (2001), 137–149 | DOI | MR | Zbl
[68] Alias L. J., Pastor J. A., “Spacelike hypersurfaces with constant scalar curvature in the Loretz–Minkokowki space”, Annals of Global Analisis and Geometry, 18 (2000), 75–83 | DOI | MR | Zbl
[69] Bahn H., Hong S., “Geometric inequalities for spacelike hypersurfaces in the Minkowski spacetime”, Geometry and Physics, 37 (2001), 94–99 | DOI | MR | Zbl
[70] Beem J. K., Erlich P. E., Markvorsen S., “Timelike isometries of space-times with nonnegative sectional curvature”, Top. Diff. Geom., v. 1 (Debrecen, Aug. 26–Sept. 1, 1984), Colloq. Math. Soc. Janos Bolyai, Amsterdam, 1988, 153–165 | MR | Zbl
[71] Bektash M., Ergut M., “Compact spacetime hypersurfaces in the de Sitter space”, Proc. Inst. Math. and Mech. of Azerbaijan AS, 1999, no. 10, 20–24 | MR | Zbl
[72] Berard P. H., “From vanishing theorem to estimating theorem: the Bochner technique revisited”, Bull. Amer. Math. Soc., 19:2 (1988), 371–402 | DOI | MR
[73] Berard P., “A note on Bochner type theorems for complete manifolds”, Manuscripta Math., 69:3 (1990), 261–266 | DOI | MR | Zbl
[74] Bishop R. L., O'Neill B., “Manifolds of negative curvature”, Trans. Amer. Math. Soc., 145 (1969), 1–49 | DOI | MR | Zbl
[75] Bitis Gr., “Riemannian manifolds which admit a unique harmonic or Killing tensor field”, Tensor, 48:1 (1989), 1–10 | MR | Zbl
[76] Bitis G., “Harmonic forms and Killing tensor fields”, Tensor, 55:3 (1994), 215–222 | MR | Zbl
[77] Bitis Gr., Tsagas Gr., “On the harmonic and Killing tensor field on a compact Riemannian manifolds”, Balkan J. Geom. Appl., 6:2 (2001), 99–108 | MR | Zbl
[78] Blashke W., Reidemeister K., Vorlesungen über Differential Geometrie II. Affine Differential Geometrie, Springer, Berlin, 1923
[79] Blau M., “Symmetries and pseudo-Riemannian manifold”, Rep. Math. Phys., 25:1 (1988), 109–116 | DOI | MR | Zbl
[80] Bochner S., “Vector fields and Ricci curvature”, Bull. Amer. Math. Soc., 52 (1946), 776–797 | DOI | MR | Zbl
[81] Bochner S., Yano K., Curvature and Betti Numbers, Princeton Univ. Press, Princeton, 1953 | MR | Zbl
[82] Brock B. W., Steinke J. M., “Local restrictions on nonpositively curved $n$-manifolds in $\mathbb{R}^{n+p}$”, Pacific J. Math., 196:2 (2000), 271–281 | DOI | MR
[83] Buleanu D., Codoban S., “Killing tensor and separable coordinates in $(1+1)$-dimensions”, Rom. J. Phys., 44:9–10 (1999), 933–938 | MR
[84] Chen B.-Y., Nagano T., “Harmonic metric, harmonic tensors and Gauss maps”, J. Math. Soc. Japan, 36:2 (1984), 295–313 | DOI | MR | Zbl
[85] Chen S. S., “The geometry of $G$-structure”, Bull. Amer. Math. Soc., 72 (1966), 167–219 | DOI | MR
[86] Colinson C. D., “The existence of Killing tensors in emply space-times”, Tensor, 28 (1974), 173–176 | MR
[87] Collinson C. D., Howarth L., “Generalized Killing tensor”, Gen. Relativ. Gravit., 32:9 (2000), 1767–1776 | DOI | MR | Zbl
[88] Dietz W., Rudiger R., “Space-times admittings Killin–Yano tensor. I”, Proc. Roy. Soc. London Ser. A, 375:1762 (1981), 361–378 | DOI | MR | Zbl
[89] Dietz W., Rudiger R., “Space-times admittings Killin–Yano tensor. II”, Proc. Roy. Soc. London Ser. A, 381:1781 (1982), 315–322 | DOI | MR | Zbl
[90] Duff G. F. D., Spencer D. C., “Harmonic tensor on Riemannian with boundary”, Ann. Math., 56:1 (1952), 128–156 | DOI | MR | Zbl
[91] Dussan M. P., Noronha M. H., “Manifolds with $2$-nonnegative Ricci operator”, Pacific J. Math., 2002, no. 2, 319–334 | DOI | MR | Zbl
[92] Fagundes H. V., “Closed spaces in cosmology”, Gen. Relativ. Gravit., 24:2 (1992), 199–217 | DOI | MR | Zbl
[93] Fulton C. M., “Parallel vector fields”, Proc. Amer. Math. Soc., 16 (1965), 136–137 | DOI | MR | Zbl
[94] Galloway G. J., “Some global aspect of compact space-time”, Arch. Math., 42:2 (1984), 168–172 | DOI | MR | Zbl
[95] Ganchev G., Ivanov S., “Harmonic and holomorphic 1-forms on compact balanced Hermitian manifold”, Differential Geom. Appl., 14:1 (2001), 79–93 | DOI | MR | Zbl
[96] Gray A., Hervella L., “The sixteen class of almost Hermitean manifolds”, Ann. Mat. Pura Appl., 1980, no. 123, 35–58 | DOI | MR | Zbl
[97] Grotemeyer K., “Die Integralsätze der affinen Flächentheorie”, Arch. Math., 3 (1952), 38–43 | DOI | MR | Zbl
[98] Hamilton R. S., “Four-manifolds with positive curvature operator”, J. Differ. Geom., 24 (1986), 153–179 | MR | Zbl
[99] Harris S. G., “What is the shape of space in spacetime?”, Diff. Geom.: Geom. Math. Phys. and Relat. Top., Proc. Summ. Res. Inst. Differ. Geom. (Los Angeles, July 8–28, 1990), Providence, 1993, 287–296 | MR | Zbl
[100] Ishihara Sh., “The integral formulas and their applications in some affinely connected manifolds”, Kodai Math. Sem. Rep., 13:2 (1961), 93–108 | DOI | MR | Zbl
[101] Jun J.-B., Ayabe Sh., Yamaguchi S., “On conformal Killing $p$-form in compact Kaehlerian manifolds”, Tensor, 42:3 (1985), 258–271 | MR | Zbl
[102] Jun J.-B., Yamaguchi S., “On projective Killing $p$-forms in Riemannian manifolds”, Tensor, 43 (1986), 157–166 | MR | Zbl
[103] Kalina J., Orsted B., Pierzchalski A., Walczak P., Zhang F., “Elliptic gradients and highest weights”, Bull. Acad. Polon. Sci. Sér. Sci. Math., 44 (1996), 511–519 | MR
[104] Kalina J., Pierzchalski A., Walczak P., “Only one of generalized gradients can be elliptic”, Ann. Polon. Math., LXVII:2 (1997), 111–120 | MR | Zbl
[105] Kashiwada T., “On conformal Killing tensor”, Natur. Sci. Rep. Ochanomizu Univ., 19 (1968), 67–74 | MR | Zbl
[106] Klingeberg W. P. A., “Affine Differential Geometry, by Katsumi Nomizu and Takeshi Sasaki. Book reviews”, Bull. Amer. Math. Soc., 33:1 (1996), 75–76 | DOI
[107] Klishevich V. V., “Exact solution of Dirac and Klein–Gordon–Fock equations in a curved space admitting a second Dirac operator”, Classical Quantum Gravity, 18 (2001), 3735–3752 | DOI | MR | Zbl
[108] Kolai I., Michor P. W., Slowak J., Natural Operators in Differential Geometry, Springer, Berlin, New York, 1993
[109] Kora M., “On conformal Killing forms and the proper space of for $p$-forms”, Math. J. Okayama Univ., 22 (1980), 195–204 | MR | Zbl
[110] Marsden J. E., Tipler F. J., “Maximal hypersurfaces and foliations of constant mean curvature in general relativity”, Phys. Rep., 66:3 (1980), 109–139 | DOI | MR
[111] Martens R., Mason D. P., “Kinematics and dynamic properties of conformal Killing vectors in anisotropic fluids”, J. Math. Phys., 27:12 (1986), 2987–2994 | DOI | MR
[112] Mason D. P., Tsamparlis M., “Spacelike conformal Killing vector and spacelike congruences”, J. Math. Phys., 26:11 (1985), 2881–2901 | DOI | MR | Zbl
[113] Meyer D., “Sur les variétés riemanniennes a opérateur de courbure positif”, C. R. Acad. Sci. Paris, 272 (1971), 482–485 | MR | Zbl
[114] Montiel S., “An integral inequality for compact space-like hypersurfaces in de Sitter space and applications to the case of constant mean curvature”, Indiana Univ. Math. J., 37:4 (1988), 909–917 | DOI | MR | Zbl
[115] Mustafa M. T., “A Bochner technique for harmonic morphisms”, J. London Math. Soc., 57:3 (1998), 746–756 | DOI | MR | Zbl
[116] Muzinich I. J., “Differential geometry in the large and compactification of higher-dimensional gravity”, J. Math. Phys., 27:5 (1986), 1393–1397 | DOI | MR
[117] Nijenhuis A., “A note on first integrals of geodesics”, Proc. Konink. Nederl. Akad. Wetensch., LXX:2 (1967), 141–145 | MR | Zbl
[118] Nomizu K., “What is affine differential geometry?”, Proc. Conf. on Differential Geometry, Muster, 1982, 42–43
[119] Nomizu K., “On completeness in affine differential geometry”, Geom. Dedicata, 20:1 (1986), 43–49 | DOI | MR | Zbl
[120] Nomizu K., “A survey of recent result in affine differential geometry”, Geometry and Topology of Submanifolds III (Conf. Leeds, 1990), eds. L. Verstraelen, A. West, Word Scientific, London, Singapore, 1991, 227–256 | MR | Zbl
[121] Nomizu K., “On affine hypersurfaces with parallel nullity”, J. Math. Soc. Japan, 44:4 (1992), 693–699 | DOI | MR | Zbl
[122] Nomizu K., Magid M. A., “On affine surfaces whose cubic forms are parallel relative to affine metric”, Proc. Japan Acad. Ser. A Math. Sci., 65:7 (1989), 215–222 | DOI | MR
[123] Nomizu K., Pinkall U., “On the geometry of affine immersions”, Math. Z., 195:2 (1987), 165–178 | DOI | MR | Zbl
[124] Nomizu K., Sasaki T., Affine Differential Geometry, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[125] Ogiue K., Tachibana S., “Les variétés riemanniennes dont l'opérateur de courbure restreint est positif sont des sphères d'homologie réelle”, C. R. Acad. Sci. Paris, 289 (1979), 29–30 | MR | Zbl
[126] O'Neill B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, London, 1983 | MR
[127] Pak H. K., Takahashi T., “Harmonic forms in a compact contact manifold”, Proc. Fifth Pacific Ric Geometry Conf. (July 25–28, 2000), Tohoku Univ. Press, Japan, 2000, 125–129 | MR
[128] Petersen P., “Aspects of global Riemannian geometry”, Bull. Amer. Math. Soc., 36:3 (1999), 297–344 | DOI | MR | Zbl
[129] Polombo A., “De nouvelles formules de Weitzenbock pour des endomorphismes harmoniques. Applications géométriques”, Ann. Sci. École Norm. Sup., 25:4 (1992), 393–428 | MR | Zbl
[130] Reinhart B. L., Differential Geometry of Foliation, Springer, Berlin, 1983 | MR | Zbl
[131] Romero A., Sanchez M., “An integral inequality on compact Lorentz manifolds and its applications”, Bull. London Math. Soc., 28 (1996), 509–513 | DOI | MR | Zbl
[132] Romero A., Sanchez M., “An introduction to Bochner's technique on Lorentzian manifolds”, Differential Geometry and its Applications to Mathematical Physics, Proc. V Fall Workshop, Jaca, Spain, 1996, 56–67
[133] Romero A., Sanchez M., “Bochner's technique on Lorentz manifolds and infinitesimal conformal symmetries”, Pacific J. Math., 186:1 (1998), 141–148 | DOI | MR | Zbl
[134] Romero A., Sanchez M., “Projective vector fields on Lorentzian manifolds”, Geom. Dedicata, 93 (2002), 95–105 | DOI | MR | Zbl
[135] Santaly L. A., “Affine integral geometry and convex bodies”, J. Microsc., 151:3 (1988), 229–233
[136] Schwenk A., “Affinsphären mit ebenen Schattengrenzen”, Global Differential Geometry and Global Analysis, 1984, Lecture Notes Math., 1156, eds. D. Ferus, R. B. Gardner, S. Helgason, U. Simon, Springer, Berlin, 1985, 296–315 | MR
[137] Seamon W., “Harmonic 2-forms in four dimensions”, Proc. Amer. Math. Soc., 112:2 (1991), 545–548 | DOI | MR
[138] Shiffman B., Sommese A. J., Vanishing theorems in complex manifolds, Progress in Math., 56, Birkhäuser, Boston, 1985 | MR | Zbl
[139] Shouten J. A., Ricci-calculus, Grundlehren Math. Wiss., 10, Springer, Berlin, 1954
[140] Simon U., “Recent developments in affine differential geometry”, Diff. Geom. and Its Appl., Proc. Int. Conf. (Dubrovnik, June 26–July 3, 1988), Inst. Math. Univ. Novi Sad, Novi Sad, 1989, 327–347 | MR
[141] Simon U., “Directly Problems and the Laplacian in Affine Hypersurface Theory”, Lecture Notes Math., 1369, Springer, Berlin, 1989, 243–260 | MR
[142] Simon U., Schwenk A., “Hypersurfaces with constant equiaffine mean curvature”, Arch. Math., 46:1 (1986), 85–90 | DOI | MR | Zbl
[143] Simon U., Schwenk-Schellshmidt A., Viesel H., Introduction to the Affine Differential Geometry of Hypersurfaces, Lecture Notes, Science Univ. Tokyo Press, Tokyo, 1991 | MR
[144] Singh K. D., “Affine 2-Killing vector and tensor field”, Comp. Red. Acad. Bulg. Sci., 36:11 (1983), 1375–1378 | MR | Zbl
[145] Slysarska W., “On devaluation from ample flatness”, Demonstratio Math., 21:2 (1988), 505–511 | MR
[146] Smolnikova M. V., “On global geometry harmonic symmetric bilinear differential forms”, Tezisy dokladov Mezhdunarodnoi konferentsii po differentsialnym uravneniyam i dinamicheskim sistemam (21–26 avgusta 2000 g., Suzdal), Izd-vo VlGU, Vladimir, 2000, 87–88
[147] Stepanov S. E., “An integral formula for a Riemannian almost-product manifold”, Tensor, 55 (1994), 209–214 | MR | Zbl
[148] Stepanov S. E., “A class of closed forms and special Maxwell's equations”, Tensor, 58 (1997), 233–242 | MR | Zbl
[149] Stepanov S. E., “New theorem of duality and its applications”, Noveishie problemy teorii polya (1999–2000), Izd-vo KGU, Kazan, 2000, 373–376
[150] Stepanov S. E., “On conformal Killing 2-form of the electromagnetic field”, J. Geom. Phys., 33 (2000), 191–209 | DOI | MR | Zbl
[151] Stepanov S. E., “Riemannian almost product manifolds and submersions”, J. Math. Sci., 99:6 (2000), 1788–1831 | DOI | MR | Zbl
[152] Stepanov S. E., “New methods of the Bochner technique and their applications”, J. Math. Sci., 113:3 (2003), 514–535 | DOI | MR
[153] Stepanov S. E., Shandra I. G., “Geometry of infinitesimal harmonic transformations”, Ann. Global Anal. Geom., 24:3 (2003), 291–299 | DOI | MR | Zbl
[154] Stepanov S. E., Tsyganok I. I., “On a generalization of Kashiwada's theorem”, Webs and Quasigroups (1998–1999), Tver State Univ. Press, Tver, 1999, 162–167 | MR | Zbl
[155] Sumitomo T., Tandai K., “Killing tensor fields on the standard sphere and spectra of $SO(n+1)/SO(n-1)\times SO(2)$ and $O(n+1)/O(n-1)\times O(2)$”, Osaka J. Math., 20 (1983), 51–78 | MR | Zbl
[156] Tachibana Sh., “On Killing tensor in a Riemannian space”, Tohoku Math. J., 20 (1968), 257–264 | DOI | MR | Zbl
[157] Tachibana Sh., “On conformal Killing tensor in a Riemannian space”, Tohoku Math. J., 21 (1969), 56–64 | DOI | MR | Zbl
[158] Tachibana Sh., “On projective Killing tensor”, Natur. Sci. Rep. Ochanomizu Univ., 21 (1970), 67–80 | MR | Zbl
[159] Takano K., “On projective Killing $p$-form in a Sasakian manifold”, Tensor, 60 (1998), 274–292 | MR | Zbl
[160] Takano K., Yamaguchi S., “On a special projective Killing $p$-form with constant $k$ in a Sasakian manifold”, Acta Sci. Math., 62 (1996), 299–317 | MR | Zbl
[161] Thompson G., “Killing tensor in spaces of constant curvature”, J. Math. Phys., 27:11 (1986), 2693–2699 | DOI | MR | Zbl
[162] Tsagas Gr., “On the Killing tensor fields on a compact Riemannian manifold”, Balkan J. Geom. Appl., 1:2 (1996), 91–97 | MR | Zbl
[163] Tsyganok I. I., Stepanov S. E., “Vector fields in manifold with equiaffine connection”, Webs and Quasigroups, Tver State Univ. Press, Tver, 1993, 70–77 | MR | Zbl
[164] Wang X.-J., “Affine maximal hypersurfaces”, Proc. of ICM, Vol. III, Higher Educ. Press, Beijing, 2000, 221–231 | MR
[165] Weber M., “Die Bochner-methode und Sius starrheitssatz”, Bonn Math. Schr., 1989, no. 198, 1–58
[166] Weitzenbock R., Invariantentheorie, Noordhoft, Groningen, 1923
[167] Woodhouse N. M. J., “Killing tensor and the separation of the Hamilton–Jacobi equation”, Comm. Math. Phys., 44:9 (1975), 1159–1167 | MR
[168] Wu H., “The Bochner technique”, Proc. Beijinng Symp. Diff. Geom. and Diff. Equat., Vol. 2 (Aug. 18–Sept. 21, 1980, Beijing), Science Press, Gordon and Breach, Beijing, New York, 1982, 929–1071 | MR
[169] Wu H., The Bochner Technique in Differential Geometry, Part 2, Mathematical Reports, 3, Hardwood Academic Publishers, London, Paris, New York, 1988 | MR
[170] Xiaochun R., “A Bochner theorem and applications”, Duke Math. J., 91:2 (1998), 381–392 | DOI | MR | Zbl
[171] Ximin L., “Integral inequalities for maximal space-like submanifolds in the indefinite space form”, Balkan J. Geom. Appl., 6:1 (2001), 109–114 | MR | Zbl
[172] Yano K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970 | MR | Zbl
[173] Yau Ch.-T., Cheng Ch.-Y., “Complete affine hypersurfaces. Part I. The completeness of affine metrics”, Comm. Pure Appl. Math., 39:6 (1986), 839–866 | DOI | MR | Zbl
[174] Yun G., “Total scalar curvature and $L^2$-harmonic 1-forms on minimal hypersurface in Euclidean space”, Geom. Dedicata, 89 (2002), 135–141 | DOI | MR