Vanishing theorems in affine, Riemannian, and Lorenz geometries
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 35-84

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey, we consider one aspect of the Bochner technique, the proof of vanishing theorems by using the Weitzenbock integral formulas, which allows us to extend the technique to pseudo-Riemannian manifolds and equiaffine connection manifolds.
@article{FPM_2005_11_1_a1,
     author = {S. E. Stepanov},
     title = {Vanishing theorems in affine, {Riemannian,} and {Lorenz} geometries},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {35--84},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a1/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - Vanishing theorems in affine, Riemannian, and Lorenz geometries
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 35
EP  - 84
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a1/
LA  - ru
ID  - FPM_2005_11_1_a1
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T Vanishing theorems in affine, Riemannian, and Lorenz geometries
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 35-84
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a1/
%G ru
%F FPM_2005_11_1_a1
S. E. Stepanov. Vanishing theorems in affine, Riemannian, and Lorenz geometries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 1, pp. 35-84. http://geodesic.mathdoc.fr/item/FPM_2005_11_1_a1/