Model-theoretic properties of regular polygons
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 107-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to results obtained in the model theory of regular polygons. We give a characterization of monoids with axiomatizable and model-complete class of regular polygons. We describe the monoids with complete class of regular polygons that satisfy some additional conditions. We study the monoids whose regular core is represented as a union of finitely many principal right ideals and all regular polygons over which have a stable and superstable theory. We prove the stability of the class of all regular polygons over a monoid provided this class is axiomatizable and model-complete. We also describe the monoids for which the class of all regular polygons is superstable and $\omega$-stable provided this class is axiomatizable and model-complete.
@article{FPM_2004_10_4_a8,
     author = {A. V. Mikhalev and E. V. Ovchinnikova and E. A. Palyutin and A. A. Stepanova},
     title = {Model-theoretic properties of regular polygons},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {107--157},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a8/}
}
TY  - JOUR
AU  - A. V. Mikhalev
AU  - E. V. Ovchinnikova
AU  - E. A. Palyutin
AU  - A. A. Stepanova
TI  - Model-theoretic properties of regular polygons
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 107
EP  - 157
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a8/
LA  - ru
ID  - FPM_2004_10_4_a8
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%A E. V. Ovchinnikova
%A E. A. Palyutin
%A A. A. Stepanova
%T Model-theoretic properties of regular polygons
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 107-157
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a8/
%G ru
%F FPM_2004_10_4_a8
A. V. Mikhalev; E. V. Ovchinnikova; E. A. Palyutin; A. A. Stepanova. Model-theoretic properties of regular polygons. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 107-157. http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a8/

[1] Ershov Yu. L., Palyutin E. A., Matematicheskaya logika, Nauka, M., 1987 | MR | Zbl

[2] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[3] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[4] Mustafin T. G., “O stabilnostnoi teorii poligonov”, Teoriya modelei i eë primenenie, Tr. AN SSSR. Sib. otd-e. In-t matematiki, 8, Nauka, Sib. otd-e, Novosibirsk, 1988, 92–107 | MR

[5] Ovchinnikova E. V., “Polnye klassy regulyarnykh poligonov s konechnym chislom idempotentov”, Sib. mat. zhurn., 36:2 (1995), 381–384 | MR | Zbl

[6] Ovchinnikova E. V., “Stroenie klassa regulyarnykh poligonov”, Issledovaniya v teorii algebraicheskikh sistem, Mezhvuzovskii sbornik nauchnykh trudov, Izd-vo KarGU, Karaganda, 1995, 84–86

[7] Ovchinnikova E. V., “Monoid, nad kotorym klass regulyarnykh poligonov polon, ne modelno polon”, Sib. mat. zhurn., 38:5 (1997), 1110–1114 | MR | Zbl

[8] Ovchinnikova E. V., “Ne lineino uporyadochennyi monoid, nad kotorym klass regulyarnykh poligonov polon, no ne modelno polon”, Algebra i teoriya modelei, 3, Sbornik trudov, Izd-vo NGTU, Novosibirsk, 2001, 83–98 | MR

[9] Ovchinnikova E. V., “Polnye klassy regulyarnykh poligonov nad monoidami glubiny $2$”, Algebra i logika, 41:6 (2002), 745–753 | MR | Zbl

[10] Palyutin E. A., “Spektr i struktura modelei polnykh teorii”, Spravochnaya kniga po matematicheskoi logike. Chast 1. Teoriya modelei, Nauka, M., 1982, 320–387 | MR

[11] Saks Dzh., Teoriya nasyschennykh modelei, Mir, M., 1976 | MR

[12] Stepanova A. A., “Aksiomatiziruemost i modelnaya polnota klassa regulyarnykh poligonov”, Sib. mat. zhurn., 35:1 (1994), 181–193 | MR | Zbl

[13] Stepanova A. A., “Stabilnost klassa regulyarnykh poligonov”, Issledovaniya v teorii algebraicheskikh sistem, Mezhvuzovskii sbornik nauchnykh trudov, Izd-vo KarGU, Karaganda, 1995, 95–102

[14] Stepanova A. A., “Monoidy so stabilnymi teoriyami regulyarnykh poligonov”, Algebra i logika, 40:4 (2001), 430–457 | MR | Zbl

[15] Sushkevich A. K., Teoriya obobschënnykh grupp, Gos. nauch.-tekhn. izd-vo Ukrainy, Kharkov, Kiev, 1937

[16] Fountain J. B., Gould V., Stability of S-Sets, Preprint, 2001

[17] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter de Gruyter, Berlin, New York, 2000 | MR | Zbl

[18] Shelah S., Classification Theory and the Number of Non-Isomorphic Models, Second edition, North-Holland, 1990 | MR | Zbl

[19] Tran L. H., “Characterization of monoid by regular acts”, Period. Math. Hungar., 16 (1985), 273–279 | DOI | MR | Zbl

[20] Zelmanowitz J., “Regular modules”, Trans. Amer. Math. Soc., 163 (1972), 341–355 | DOI | MR | Zbl