On one variety of alternative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 23-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the variety of alternative algebras with the identity of index $5$ Lie nilpotency. We prove that the variety of alternative algebras over a field of characteristic different from 2 and 3 with the identity $[[[[x_1,x_2],x_3],x_4],x_5]=0$ has the Specht property.
@article{FPM_2004_10_4_a2,
     author = {A. N. Vaulin},
     title = {On one variety of alternative algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a2/}
}
TY  - JOUR
AU  - A. N. Vaulin
TI  - On one variety of alternative algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 23
EP  - 34
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a2/
LA  - ru
ID  - FPM_2004_10_4_a2
ER  - 
%0 Journal Article
%A A. N. Vaulin
%T On one variety of alternative algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 23-34
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a2/
%G ru
%F FPM_2004_10_4_a2
A. N. Vaulin. On one variety of alternative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 23-34. http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a2/

[1] Badeev A. V., “O shpekhtovosti mnogoobrazii kommutativnykh alternativnykh algebr nad polem kharakteristiki $3$ i kommutativnykh lup Mufang”, Sib. mat. zhurn., 41:6 (2000), 1252–1268 | MR

[2] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[3] Belov A. Ya., “Kontrprimery k probleme Shpekhta”, Mat. sb., 191:3 (2000), 13–24 | MR | Zbl

[4] Vaulin A. N., “Svobodnaya alternativnaya algebra s tozhdestvom $[[[x,y],z],t]=0$”, Chebyshevskii sbornik, 4:1 (2003), 54–60 | MR | Zbl

[5] Grishin A. V., “O konechnoi baziruemosti abstraktnykh T-prostranstv”, Fundam. i prikl. mat., 1:3 (1995), 669–700 | MR | Zbl

[6] Dnestrovskaya tetrad. Nereshennye zadachi teorii kolets i modulei, Institut matematiki SO AN RAN, Novosibirsk, 1993 | MR

[7] Dorofeev G. V., “O nekotorykh svoistvakh ob'edineniya mnogoobrazii algebr”, Algebra i logika, 1977, no. 1, 24–39 | MR | Zbl

[8] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[9] Iltyakov A. V., “Reshetka podmnogoobrazii mnogoobraziya dvukhstupenchato razreshimykh alternativnykh algebr”, Algebra i logika, 21:2 (1982), 170–177 | MR

[10] Kemer A. R., “Konechnaya baziruemost tozhdestv assotsiativnykh algebr”, Algebra i logika, 26:5 (1987), 597–641 | MR

[11] Latyshev V. N., “Shpekhtovost T-ideala $T=\{[x_1,x_2,\ldots,x_{n-2},[x_{n-1},x_{n}]]\}$”, DAN SSSR, 207:4 (1972), 777–780 | Zbl

[12] Medvedev Yu. A., “Konechnaya baziruemost mnogoobrazii s dvuchlennym tozhdestvom”, Algebra i logika, 17:6 (1978), 705–726 | MR

[13] Medvedev Yu. A., “Primer mnogoobraziya razreshimykh alternativnykh algebr nad polem kharakteristiki $2$, ne imeyuschego konechnogo bazisa tozhdestv”, Algebra i logika, 19:3 (1980), 300–313 | MR | Zbl

[14] Pchelintsev S. V., “Razreshimye indeksa $2$ mnogoobraziya algebr”, Mat. sb., 115 (1981), 179–203 | MR | Zbl

[15] Pchelintsev S. V., “Mnogoobraziya razreshimykh indeksa $2$ alternativnykh algebr nad polem kharakteristiki $3$”, Mat. zametki, 66:4 (1999), 556–560 | MR

[16] Pchelintsev S. V., “Ob odnom pochti shpekhtovom mnogoobrazii tsentralno-metabelevykh alternativnykh algebr nad polem kharakteristiki $3$”, Mat. sb., 191:6 (2000), 127–144 | MR | Zbl

[17] Umirbaev U. U., “Shpekhtovost mnogoobraziya razreshimykh alternativnykh algebr”, Algebra i logika, 24:2 (1985), 226–239 | MR | Zbl

[18] Schigolev V. V., “Primery beskonechno baziruemykh T-idealov”, Fundam. i prikl. mat., 5:1 (1999), 307–312 | MR | Zbl

[19] Higman G., “Ordering by divisibility in abstract algebras”, Proc. London Math. Soc., 3:2 (1952), 326–336 | DOI | MR | Zbl

[20] Sagle A., “Malcev algebras”, Trans. Amer. Math. Soc., 101:3 (1961), 426–458 | DOI | MR | Zbl