An upper bound for the index of multiplicities in the cocharacters of PI-algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 207-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an upper bound for the index of the polynomial degree limiting the multiplicities in the cocharacter of a variety of associative algebras over a field of characteristic zero.
@article{FPM_2004_10_4_a12,
     author = {I. Yu. Sviridova},
     title = {An upper bound for the index of multiplicities in the cocharacters of {PI-algebras}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {207--223},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a12/}
}
TY  - JOUR
AU  - I. Yu. Sviridova
TI  - An upper bound for the index of multiplicities in the cocharacters of PI-algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 207
EP  - 223
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a12/
LA  - ru
ID  - FPM_2004_10_4_a12
ER  - 
%0 Journal Article
%A I. Yu. Sviridova
%T An upper bound for the index of multiplicities in the cocharacters of PI-algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 207-223
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a12/
%G ru
%F FPM_2004_10_4_a12
I. Yu. Sviridova. An upper bound for the index of multiplicities in the cocharacters of PI-algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 207-223. http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a12/

[1] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR

[2] Kemer A. R., “Predstavimost privedenno-svobodnykh algebr”, Algebra i logika, 27:3 (1988), 274–294 | MR | Zbl

[3] Latyshev V. N., “Dva zamechaniya o PI-algebrakh”, Sib. mat. zhurn., 4 (1963), 1120–1121 | Zbl

[4] Amitsur S. A., Regev A., “P.I. algebras and their cocharacters”, J. Algebra, 78 (1982), 248–254 | DOI | MR | Zbl

[5] Benanti F., Giambruno A., Sviridova I., “Asymptotics for the multiplicities in the cocharacters of some PI-algebras”, Proc. Amer. Math. Soc., 132:3 (2004), 669–679 | DOI | MR | Zbl

[6] Berele A., Regev A., “Applications of hook Young diagrams to P.I. algebras”, J. Algebra, 82 (1983), 559–567 | DOI | MR | Zbl

[7] Berele A., Regev A., “Codimensions of products and of intersections of verbally prime T-ideals”, Israel J. Math., 103 (1998), 17–28 | DOI | MR | Zbl

[8] Giambruno A., Zaicev M., “On codimension growth of finitely generated associative algebras”, Adv. Math., 140 (1998), 145–155 | DOI | MR | Zbl

[9] Giambruno A., Zaicev M., “Exponential codimension growth of P.I. algebras: an exact estimate”, Adv. Math., 142 (1999), 221–243 | DOI | MR | Zbl

[10] Giambruno A., Zaicev M., “Asymptotics for the standard and the Capelli identities”, Israel J. Math., 135 (2003), 125–145 | DOI | MR | Zbl

[11] Kemer A. R., Ideals of Identities of Associative Algebras, Amer. Math. Soc. Translations of Math. Monographs, 87, AMS, Providence, 1991 | MR | Zbl

[12] Mishchenko S. P., Regev A., Zaicev M. V., “A characterization of PI-algebras with bounded multiplicities of the cocharacters”, J. Algebra, 219 (1999), 356–368 | DOI | MR | Zbl

[13] Olsson J., Regev A., “The colength of some T-ideals”, J. Algebra, 1976, 100–111 | DOI | MR | Zbl

[14] Rowen L. H., Polynomial Identities in Ring Theory, Academic Press, 1980 | MR | Zbl