Topological prime radical of a~group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 15-22
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider two approaches for the definition of a topological prime radical of a topological group. In the first approach, the prime quasi-radical $\eta(G)$ is defined as the intersection of all closed prime normal subgroups of a topological group $G$. Its properties are investigated. In the second approach, we consider the set $\eta'(G)$ of all topologically strictly Engel elements of a topological group $G$. Its properties are investigated. It is proved that $\eta'(G)$ is a radical in the class of all topological groups possessing a basis of neighborhoods of the identity element consisting of normal subgroups.
@article{FPM_2004_10_4_a1,
author = {B. Bazigaran and S. T. Glavatskii and A. V. Mikhalev},
title = {Topological prime radical of a~group},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {15--22},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a1/}
}
TY - JOUR AU - B. Bazigaran AU - S. T. Glavatskii AU - A. V. Mikhalev TI - Topological prime radical of a~group JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2004 SP - 15 EP - 22 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a1/ LA - ru ID - FPM_2004_10_4_a1 ER -
B. Bazigaran; S. T. Glavatskii; A. V. Mikhalev. Topological prime radical of a~group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 15-22. http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a1/