Rank permutability and additive operators preserving related rank product conditions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize bijective additive operators preserving rank product conditions of a certain type. We also show that if an additive operator preserves the corresponding condition strongly, then it is automatically nonsingular.
@article{FPM_2004_10_4_a0,
     author = {A. A. Alieva and A. \`E. Guterman},
     title = {Rank permutability and additive operators preserving related rank product conditions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a0/}
}
TY  - JOUR
AU  - A. A. Alieva
AU  - A. È. Guterman
TI  - Rank permutability and additive operators preserving related rank product conditions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 3
EP  - 14
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a0/
LA  - ru
ID  - FPM_2004_10_4_a0
ER  - 
%0 Journal Article
%A A. A. Alieva
%A A. È. Guterman
%T Rank permutability and additive operators preserving related rank product conditions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 3-14
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a0/
%G ru
%F FPM_2004_10_4_a0
A. A. Alieva; A. È. Guterman. Rank permutability and additive operators preserving related rank product conditions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 4, pp. 3-14. http://geodesic.mathdoc.fr/item/FPM_2004_10_4_a0/

[1] Alieva A., Guterman A., “Linear preservers of rank permutability”, Linear Algebra Appl., 384 (2004), 97–108 | DOI | MR | Zbl

[2] Botta P., “Linear maps that preserve singular and nonsingular matrices”, Linear Algebra Appl., 20 (1978), 45–49 | DOI | MR | Zbl

[3] Cao C.-G., Zhang X., “Additive surjections preserving rank one and applications”, Georgian Math. J., 11:2 (2004), 209–217 | MR | Zbl

[4] Dieudonné J., “Sur une généralisation du groupe orthogonal à quatre variables”, Arch. Math., 1 (1949), 282–287 | DOI | MR | Zbl

[5] Fošner A., Šemrl P., Additive maps on matrix algebras preserving invertibility or singularity, Preprint

[6] Frobenius G., “Über die Darstellung der endlichen Gruppen durch lineare Substitutionen”, Sitzungsber. Preuss. Akad. Wiss, Preuss. Akad. Wiss., Berlin, 1897, 994–1015

[7] Hua L. K., “A theorem on matrices over field and its applications”, J. Chinese Math. Soc., 1 (1951), 110–163 | MR

[8] Kaplansky I., Algebraic and analytic aspects of operator algebras, American Mathematical Society, Providence, 1970 | MR | Zbl

[9] Kuzma B., “Additive mappings decreasing rank one”, Linear Algebra Appl., 348 (2002), 175–187 | DOI | MR | Zbl

[10] Livshits L., MacDonald G., Mathes B., Okniński J., Radjavi H., “Matrix semigroups with commutable rank”, Semigroup Forum, 67:2 (2003), 288–316 | DOI | MR | Zbl

[11] Omladič M., Šemrl P., “Additive mappings preserving operators of rank one”, Linear Algebra Appl., 182 (1993), 239–256 | DOI | MR | Zbl

[12] Pierce S. et al., “A survey of linear preserver problems”, Linear and Multilinear Algebra, 33 (1992), 1–119 | Zbl

[13] Radjavi H., Rosenthal P., Simultaneous Triangularization, Springer, New York, 2000 | MR | Zbl

[14] Schur I., “Einige Bemerkungen zur Determinantentheorie”, Sitzungsber. Preuss. Akad. Wiss., Preuss. Akad. Wiss., Berlin, 1925, 454–463