On Rees weakly projective right acts
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 85-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we present an extension of the concept of weakly projective acts to the so-called $(S/I,S/J)$-projective acts. Retracts, coproducts, and products of acts as well as Rees factor acts are considered from the point of view of these properties. They are used to describe monoids that are disjoint unions of a group with a left zero semigroup or with a disjoint union of simple right ideals. We suggest concepts of weak QF-monoids.
@article{FPM_2004_10_3_a4,
     author = {U. Knau\`er and H. Oltmanns},
     title = {On {Rees} weakly projective right acts},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a4/}
}
TY  - JOUR
AU  - U. Knauèr
AU  - H. Oltmanns
TI  - On Rees weakly projective right acts
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 85
EP  - 96
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a4/
LA  - ru
ID  - FPM_2004_10_3_a4
ER  - 
%0 Journal Article
%A U. Knauèr
%A H. Oltmanns
%T On Rees weakly projective right acts
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 85-96
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a4/
%G ru
%F FPM_2004_10_3_a4
U. Knauèr; H. Oltmanns. On Rees weakly projective right acts. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 85-96. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a4/

[1] Azumaya G., Mbuntue F., Varadarjan K., “On M-projective and M-injective modules”, Pacific J. Math., 59:1 (1975), 9–16 | MR | Zbl

[2] Clifford A. H., Preston G. B., The Algebraic Theory of Semigroups, II, Providence, 1967

[3] Kilp M., Knauer U., “On weakly projective amalgams”, Comm. Algebra (to appear) | MR

[4] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[5] Knauer U., Oltmanns H., “Weak projectivities for $S$-acts”, General Algebra and Discrete Mathematics, eds. K. Denecke, H.-J. Vogel (Hrg.), Shaker, Aachen, 1999, 143–159

[6] Normak P., “Analogies of quasi-Frobenius rings for monoids, II”, Tartu Ül. Toimetised, 640 (1983), 38–47 | MR | Zbl

[7] Oltmanns H., Homological Classification of Monoids by Projectivities of Right Acts, Ph. D. Thesis, Oldenburg, 2000 | Zbl

[8] Oltmanns H., Laan V., Knauer U., Kilp M., On (B,B)-Projectivity, Preprint, Berlin, 2004 | MR

[9] Wu L. E. T., Jans J. P., “On quasi-projectives”, Illinois J. Math., 11 (1967), 439–448 | MR | Zbl