A~new characterization of Riemann-integrable functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 73-83
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we describe Riemann-integrable functions with the help of a new class of uniform functions. This description allows us to uncover the “countable” nature of the relation between the space of Riemann-integrable functions and the space of continuous functions. The argumentation is performed for any given topological space $T$ with limited Radon measure $\mu$ the support of which coincides with $T$.
@article{FPM_2004_10_3_a3,
author = {V. K. Zakharov and A. A. Seredinskii},
title = {A~new characterization of {Riemann-integrable} functions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {73--83},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a3/}
}
TY - JOUR AU - V. K. Zakharov AU - A. A. Seredinskii TI - A~new characterization of Riemann-integrable functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2004 SP - 73 EP - 83 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a3/ LA - ru ID - FPM_2004_10_3_a3 ER -
V. K. Zakharov; A. A. Seredinskii. A~new characterization of Riemann-integrable functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 73-83. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a3/