A~topological prime quasiradical
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 11-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a topological prime quasi-radical $\mu(R)$, which is the intersection of closed prime ideals in a topological ring $R$. Examples are given that show that $\mu(R)$ is different from those topological analogs of the prime radical that have been studied earlier. The topological prime quasi-radicals of matrix rings and rings of polynomials are investigated.
@article{FPM_2004_10_3_a1,
     author = {B. Bazigaran and S. T. Glavatskii and A. V. Mikhalev},
     title = {A~topological prime quasiradical},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {11--22},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a1/}
}
TY  - JOUR
AU  - B. Bazigaran
AU  - S. T. Glavatskii
AU  - A. V. Mikhalev
TI  - A~topological prime quasiradical
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 11
EP  - 22
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a1/
LA  - ru
ID  - FPM_2004_10_3_a1
ER  - 
%0 Journal Article
%A B. Bazigaran
%A S. T. Glavatskii
%A A. V. Mikhalev
%T A~topological prime quasiradical
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 11-22
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a1/
%G ru
%F FPM_2004_10_3_a1
B. Bazigaran; S. T. Glavatskii; A. V. Mikhalev. A~topological prime quasiradical. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 3, pp. 11-22. http://geodesic.mathdoc.fr/item/FPM_2004_10_3_a1/

[1] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebry i strukturnaya teoriya, Nauka, M., 1979 | MR

[2] Arnautov V. I., “Topologicheskii radikal Bera i razlozhenie kolets”, Sib. matem. zhurn., 5:6 (1964), 1209–1227 | MR | Zbl

[3] Arnautov V. I., “Obschaya teoriya radikalov topologicheskikh kolets”, Izv. AN RM. Mat., 2(21) (1996), 5–45 | MR | Zbl

[4] Burbaki N., Obschaya topologiya, IL, M., 1969

[5] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the Theory of Topological Rings and Modules, Marcel Dekker, New York, 1996 | MR | Zbl