Elementary equivalence of categories of modules over rings, endomorphism rings, and automorphism groups of modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 2, pp. 51-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give a small review of some recent results of elementary equivalence of linear and algebraic groups and our last new results of elementary equivalence of categories of modules, endomorphism rings of modules, lattices of submodules of modules, and automorphism groups of modules.
@article{FPM_2004_10_2_a2,
     author = {E. I. Bunina and A. V. Mikhalev},
     title = {Elementary equivalence of categories of modules over rings, endomorphism rings, and automorphism groups of modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {51--134},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a2/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - A. V. Mikhalev
TI  - Elementary equivalence of categories of modules over rings, endomorphism rings, and automorphism groups of modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 51
EP  - 134
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a2/
LA  - ru
ID  - FPM_2004_10_2_a2
ER  - 
%0 Journal Article
%A E. I. Bunina
%A A. V. Mikhalev
%T Elementary equivalence of categories of modules over rings, endomorphism rings, and automorphism groups of modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 51-134
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a2/
%G ru
%F FPM_2004_10_2_a2
E. I. Bunina; A. V. Mikhalev. Elementary equivalence of categories of modules over rings, endomorphism rings, and automorphism groups of modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 2, pp. 51-134. http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a2/

[1] Bunina E. I., “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad koltsami i telami”, Uspekhi mat. nauk, 53:2 (1998), 137–138 | MR | Zbl

[2] Bunina E. I., “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad polyami”, Fundam. i prikl. mat., 4:4 (1998), 1265–1278 | MR | Zbl

[3] Bunina E. I., “Elementarnaya ekvivalentnost grupp Shevalle”, Uspekhi mat. nauk, 56:1 (2001), 157–158 | MR | Zbl

[4] Bunina E. I., Elementarnaya ekvivalentnost lineinykh i algebraicheskikh grupp, Diss. $\dots$ kand. fiz.-mat. nauk, MGU im. M. V. Lomonosova, 2001

[5] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR

[6] Golubchik I. Z., Mikhalëv A. V., “Izomorfizmy obschei lineinoi gruppy nad assotsiativnymi koltsami”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1983, no. 3, 61–72 | MR | Zbl

[7] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir,, M, 1977 | MR

[8] Maltsev A. I., “Ob elementarnykh svoistvakh lineinykh grupp”, Problemy matematiki i mekhaniki, Novosibirsk, 1961, 110–132

[9] Mendelson E., Vvedenie v matematicheskuyu logiku, Nauka, M., 1976 | MR

[10] Milnor Dzh., Vvedenie v algebraicheskuyu K-teoriyu, Mir, M., 1974 | MR | Zbl

[11] Leng S., Algebra, Mir, M., 1968

[12] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977

[13] Beidar C. I., Mikhalev A. V., “On Malcev's theorem on elementary equivalence of linear groups”, Contemp. Math., 131 (1992), 29–35 | MR | Zbl

[14] Shelah S., “Interpreting set theory in the endomorphism semi-group of a free algebra or in the category”, Ann. Sci. Univ. Clermont Math., 13 (1976), 1–29 | MR | Zbl

[15] Solovay R. M., “Real-valued mesurable cardinals”, Proceedings of Simposia in Pure Math., XIII Part I, ed. D. Scott, AMS, Providence, 1971 | MR

[16] Tolstykh V., “Elementary equivalence of infinite-dimensional classical groups”, Ann. Pure Appl. Logic, 105 (2000), 103–156 | DOI | MR | Zbl