Linear preservers of extremes of rank inequalities over semirings: term-rank and zero-term-rank
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 2, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize linear operators on matrices over semirings that preserve the extremal cases in the bounds on term- and zero-term-ranks of sums and products of matrices.
@article{FPM_2004_10_2_a0,
     author = {L. B. Beasley and A. \`E. Guterman and S. Yi},
     title = {Linear preservers of extremes of rank inequalities over semirings: term-rank and zero-term-rank},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a0/}
}
TY  - JOUR
AU  - L. B. Beasley
AU  - A. È. Guterman
AU  - S. Yi
TI  - Linear preservers of extremes of rank inequalities over semirings: term-rank and zero-term-rank
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 3
EP  - 21
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a0/
LA  - ru
ID  - FPM_2004_10_2_a0
ER  - 
%0 Journal Article
%A L. B. Beasley
%A A. È. Guterman
%A S. Yi
%T Linear preservers of extremes of rank inequalities over semirings: term-rank and zero-term-rank
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 3-21
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a0/
%G ru
%F FPM_2004_10_2_a0
L. B. Beasley; A. È. Guterman; S. Yi. Linear preservers of extremes of rank inequalities over semirings: term-rank and zero-term-rank. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 2, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a0/

[1] Beasley L. B., “Linear operators which preserve pairs on which the rank is additive”, J. Korean S.I.A.M., 2 (1998), 27–30

[2] Beasley L. B., Guterman A. E., “Linear preservers of extremes of rank inequalities over semirings: The factor rank”, J. Math. Sci., 2004 (to appear)

[3] Beasley L. B., Guterman A. E., “Rank inequalities over semirings”, J. Korean Math. Soc. (to appear) | MR

[4] Beasley L. B., Guterman A. E., Neal C. L., “Linear preservers for Sylvester and Frobenius bounds on matrix rank”, Rocky Mountain J. Math., 2004 (to appear) | MR

[5] Beasley L. B., Lee S.-G., Song S.-Z., “Linear operators that preserve zero-term rank of Boolean matrices”, J. Korean Math. Soc., 36:6 (1999), 1181–1190 | MR | Zbl

[6] Beasley L. B., Lee S.-G., Song S.-Z., “Linear operators that preserve pairs of matrices which satisfy extreme rank properties”, Linear Algebra Appl., 350 (2002), 263–272 | MR | Zbl

[7] Beasley L. B., Pullman N. J., “Term rank, permanent and rook polynomial preservers”, Linear Algebra Appl., 90 (1987), 33–46 | DOI | MR | Zbl

[8] Beasley L. B., Pullman N. J., “Operators that preserve semiring matrix functions”, Linear Algebra Appl., 99 (1988), 199–216 | DOI | MR | Zbl

[9] Beasley L. B., Pullman N. J., “Linear operators that preserve term rank 1”, Proc. Roy. Irish Acad., 91 (1990), 71–78 | MR

[10] Brualdi R., Ryser H., Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[11] Guterman A. E., “Linear preservers for matrix inequalities and partial orderings”, Linear Algebra Appl., 331 (2001), 75–87 | DOI | MR | Zbl

[12] Marsaglia G., Styan P., “When does $\mathrm{rk}(A+B)=\mathrm{rk}(A)+\mathrm{rk}(B)$?”, Canad. Math. Bull., 15:3 (1972), 451–452 | DOI | MR | Zbl

[13] Marsaglia G., Styan P., “Equalities and inequalities for ranks of matrices”, Linear and Multilinear Algebra, 2 (1974), 269–292 | DOI | MR | Zbl

[14] Minc H., Permanents, Encyclopedia in Mathematics and its Applications, 6, Addison-Wesley Publishing Company, 1978 | MR | Zbl

[15] P. Pierce and others, “A survey of linear preserver problems”, Linear and Multilinear Algebra, 33 (1992), 1–119 | Zbl

[16] Tian Y., “Rank equalities related to outer inverses of matrices and applications”, Linear and Multilinear Algebra, 49 (2002), 269–288 | DOI | MR

[17] Tian Y., “Upper and lower bounds for ranks of matrix expressions using generalized inverses”, Linear Algebra Appl., 355 (2002), 187–214 | DOI | MR | Zbl