Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2004_10_2_a0, author = {L. B. Beasley and A. \`E. Guterman and S. Yi}, title = {Linear preservers of extremes of rank inequalities over semirings: term-rank and zero-term-rank}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--21}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a0/} }
TY - JOUR AU - L. B. Beasley AU - A. È. Guterman AU - S. Yi TI - Linear preservers of extremes of rank inequalities over semirings: term-rank and zero-term-rank JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2004 SP - 3 EP - 21 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a0/ LA - ru ID - FPM_2004_10_2_a0 ER -
%0 Journal Article %A L. B. Beasley %A A. È. Guterman %A S. Yi %T Linear preservers of extremes of rank inequalities over semirings: term-rank and zero-term-rank %J Fundamentalʹnaâ i prikladnaâ matematika %D 2004 %P 3-21 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a0/ %G ru %F FPM_2004_10_2_a0
L. B. Beasley; A. È. Guterman; S. Yi. Linear preservers of extremes of rank inequalities over semirings: term-rank and zero-term-rank. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 2, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2004_10_2_a0/
[1] Beasley L. B., “Linear operators which preserve pairs on which the rank is additive”, J. Korean S.I.A.M., 2 (1998), 27–30
[2] Beasley L. B., Guterman A. E., “Linear preservers of extremes of rank inequalities over semirings: The factor rank”, J. Math. Sci., 2004 (to appear)
[3] Beasley L. B., Guterman A. E., “Rank inequalities over semirings”, J. Korean Math. Soc. (to appear) | MR
[4] Beasley L. B., Guterman A. E., Neal C. L., “Linear preservers for Sylvester and Frobenius bounds on matrix rank”, Rocky Mountain J. Math., 2004 (to appear) | MR
[5] Beasley L. B., Lee S.-G., Song S.-Z., “Linear operators that preserve zero-term rank of Boolean matrices”, J. Korean Math. Soc., 36:6 (1999), 1181–1190 | MR | Zbl
[6] Beasley L. B., Lee S.-G., Song S.-Z., “Linear operators that preserve pairs of matrices which satisfy extreme rank properties”, Linear Algebra Appl., 350 (2002), 263–272 | MR | Zbl
[7] Beasley L. B., Pullman N. J., “Term rank, permanent and rook polynomial preservers”, Linear Algebra Appl., 90 (1987), 33–46 | DOI | MR | Zbl
[8] Beasley L. B., Pullman N. J., “Operators that preserve semiring matrix functions”, Linear Algebra Appl., 99 (1988), 199–216 | DOI | MR | Zbl
[9] Beasley L. B., Pullman N. J., “Linear operators that preserve term rank 1”, Proc. Roy. Irish Acad., 91 (1990), 71–78 | MR
[10] Brualdi R., Ryser H., Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991 | MR | Zbl
[11] Guterman A. E., “Linear preservers for matrix inequalities and partial orderings”, Linear Algebra Appl., 331 (2001), 75–87 | DOI | MR | Zbl
[12] Marsaglia G., Styan P., “When does $\mathrm{rk}(A+B)=\mathrm{rk}(A)+\mathrm{rk}(B)$?”, Canad. Math. Bull., 15:3 (1972), 451–452 | DOI | MR | Zbl
[13] Marsaglia G., Styan P., “Equalities and inequalities for ranks of matrices”, Linear and Multilinear Algebra, 2 (1974), 269–292 | DOI | MR | Zbl
[14] Minc H., Permanents, Encyclopedia in Mathematics and its Applications, 6, Addison-Wesley Publishing Company, 1978 | MR | Zbl
[15] P. Pierce and others, “A survey of linear preserver problems”, Linear and Multilinear Algebra, 33 (1992), 1–119 | Zbl
[16] Tian Y., “Rank equalities related to outer inverses of matrices and applications”, Linear and Multilinear Algebra, 49 (2002), 269–288 | DOI | MR
[17] Tian Y., “Upper and lower bounds for ranks of matrix expressions using generalized inverses”, Linear Algebra Appl., 355 (2002), 187–214 | DOI | MR | Zbl