Classes of Maxwell spaces that admit subgroups of the Poincar\'e group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 183-237

Voir la notice de l'article provenant de la source Math-Net.Ru

A Maxwell space is a triple $(M,g,F)$, where $M$ is the four-dimensional Minkowski space or a domain in it, $g$ is a pseudo-Euclidean metric on $M$, and $F$ is a closed exterior 2-form on $M$. In this paper, we give an exhaustive description of classes of Maxwell spaces that admit subgroups of the Poincaré group. Representatives of all classes are constructed.
@article{FPM_2004_10_1_a9,
     author = {M. A. Parinov},
     title = {Classes of {Maxwell} spaces that admit subgroups of the {Poincar\'e} group},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {183--237},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a9/}
}
TY  - JOUR
AU  - M. A. Parinov
TI  - Classes of Maxwell spaces that admit subgroups of the Poincar\'e group
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 183
EP  - 237
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a9/
LA  - ru
ID  - FPM_2004_10_1_a9
ER  - 
%0 Journal Article
%A M. A. Parinov
%T Classes of Maxwell spaces that admit subgroups of the Poincar\'e group
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 183-237
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a9/
%G ru
%F FPM_2004_10_1_a9
M. A. Parinov. Classes of Maxwell spaces that admit subgroups of the Poincar\'e group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 183-237. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a9/