Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2004_10_1_a8, author = {M. V. Pavlov}, title = {The {Boussinesq} equation and {Miura} type transformations}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {175--182}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a8/} }
M. V. Pavlov. The Boussinesq equation and Miura type transformations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 175-182. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a8/
[1] Borisov A. B., Zykov S. A., “Odevayuschie tsepochki diskretnykh simmetrii i razmnozhenie nelineinykh uravnenii”, Teor. i matem. fiz., 115:2 (1998), 199–214 | MR | Zbl
[2] Pavlov M. V., Tsarëv S. P., “Tri-gamiltonovy struktury egorovskikh sistem gidrodinamicheskogo tipa”, Funktsion. analiz i ego pril., 37:1 (2003), 38–54 | MR | Zbl
[3] Ferapontov E. V., “Differentsialnaya geometriya nelokalnykh gamiltonovykh operatorov gidrodinamicheskogo tipa”, Funktsion. analiz i ego pril., 25:3 (1991), 37–49 | MR | Zbl
[4] Antonowicz M., Fordy A. P., Liu Q. P., “Energy-dependent third-order Lax operators”, Nonlinearity, 1991, no. 4, 669–684 | DOI | MR | Zbl
[5] Borisov A. B., Pavlov M. V., Zykov S. A., “Proliferation scheme for the Kaup–Boussinesq system”, Physica D, 152/153 (2001), 104–109 | DOI | MR | Zbl
[6] Maltsev A. Ya., Novikov S. P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Physica D, 156 (2001), 53–80 | DOI | MR | Zbl
[7] Pavlov M. V., “Relationships between differential substitutions and Hamiltonian structures of the Korteweg–de Vries equation”, Phys. Lett. A, 243:5–6 (1998), 295–300 | DOI | MR | Zbl
[8] Pavlov M. V., “Integrable systems and metrics of constant curvature”, J. Nonlinear Math. Phys., 2002, no. 9, 173–191, Supplement 1 | DOI | MR