Decompositions of the loop algebra over $\mathrm{so}(4)$ and integrable models of the chiral equation type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 39-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Decompositions of the loop algebra over $\mathrm{so}(4)$ are considered and the exactly integrable nonlinear hyperbolic systems of the principal chiral field equation type are analyzed. New example of such system is found and the Lax representation for this example is constructed.
@article{FPM_2004_10_1_a4,
     author = {O. V. Efimovskaya and V. V. Sokolov},
     title = {Decompositions of the loop algebra over $\mathrm{so}(4)$ and integrable models of the chiral equation type},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a4/}
}
TY  - JOUR
AU  - O. V. Efimovskaya
AU  - V. V. Sokolov
TI  - Decompositions of the loop algebra over $\mathrm{so}(4)$ and integrable models of the chiral equation type
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 39
EP  - 47
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a4/
LA  - ru
ID  - FPM_2004_10_1_a4
ER  - 
%0 Journal Article
%A O. V. Efimovskaya
%A V. V. Sokolov
%T Decompositions of the loop algebra over $\mathrm{so}(4)$ and integrable models of the chiral equation type
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 39-47
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a4/
%G ru
%F FPM_2004_10_1_a4
O. V. Efimovskaya; V. V. Sokolov. Decompositions of the loop algebra over $\mathrm{so}(4)$ and integrable models of the chiral equation type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 39-47. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a4/

[1] Golubchik I. Z., Sokolov V. V., “Esche odna raznovidnost klassicheskogo uravneniya Yanga–Bakstera”, Funktsion. analiz i ego pril., 34:4 (2000), 75–78 | MR | Zbl

[2] Golubchik I. Z., Sokolov V. V., “Soglasovannye skobki Li i integriruemye uravneniya tipa modeli glavnogo kiralnogo polya”, Funktsion. analiz i ego pril., 36:3 (2002), 9–19 | MR | Zbl

[3] Sokolov V. V., “O razlozheniyakh algebry petel nad $\mathrm{so}(3)$ v summu dvukh podalgebr”, Dokl. RAN (to appear)

[4] Cherednik I. V., “Ob integriruemosti dvumernogo asimmetrichnogo kiralnogo LB $O(3)$-polya i ego kvantovogo analoga”, Yadernaya fizika, 33 (1981), 278–282