Symmetry constraints for real dispersionless Veselov--Novikov equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 5-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Symmetry constraints for dispersionless integrable equations are discussed. It is shown that under symmetry constraints, the dispersionless Veselov–Novikov equation is reduced to the $(1+1)$-dimensional hydrodynamic-type systems.
@article{FPM_2004_10_1_a1,
     author = {L. V. Bogdanov and B. G. Konopelchenko and A. Moro},
     title = {Symmetry constraints for real dispersionless {Veselov--Novikov} equation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--15},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a1/}
}
TY  - JOUR
AU  - L. V. Bogdanov
AU  - B. G. Konopelchenko
AU  - A. Moro
TI  - Symmetry constraints for real dispersionless Veselov--Novikov equation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2004
SP  - 5
EP  - 15
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a1/
LA  - ru
ID  - FPM_2004_10_1_a1
ER  - 
%0 Journal Article
%A L. V. Bogdanov
%A B. G. Konopelchenko
%A A. Moro
%T Symmetry constraints for real dispersionless Veselov--Novikov equation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2004
%P 5-15
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a1/
%G ru
%F FPM_2004_10_1_a1
L. V. Bogdanov; B. G. Konopelchenko; A. Moro. Symmetry constraints for real dispersionless Veselov--Novikov equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 10 (2004) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/FPM_2004_10_1_a1/

[1] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye potentsialnye operatory Shrëdingera. Yavnye formuly i evolyutsionnye uravneniya”, DAN SSSR, 279 (1984), 20 | MR | Zbl

[2] Dubrovin B. A., Novikov S. P., “Gidrodinamika slabo deformirovannykh solitonnykh reshëtok. Differentsialnaya geometriya i gamiltonova teoriya”, Uspekhi mat. nauk, 44 (1989), 29 | MR | Zbl

[3] “Zakharov V. E.”, Funktsion. analiz i ego pril., 14:2 (1980), 15–24 | MR | Zbl

[4] Krichever I. M., “Metod usredneniya dlya dvumernykh integriruemykh uravnenii”, Funktsion. analiz i ego pril., 22 (1988), 37 | MR | Zbl

[5] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[6] Ablowitz M. J., Segur H., Solitons and the Inverse Scattering Transform, SIAM, 1981 | MR | Zbl

[7] Bogdanov L. V., Konopelchenko B. G., Symmetry constraints for dispersionless integrable equations and systems of hydrodynamic type, Preprint , 2003 arXiv: nlin.SI/0312013 | MR

[8] Cheng Y., Li Y. S., “The constraint of the Kadomtsev–Petviashvili equation and its special solutions”, Phys. Lett. A, 157 (1991), 22 | DOI | MR

[9] Ferapontov E. V., “Stationary Veselov–Novikov equation and isothermally asymptotic surfaces in projective differential geometry”, Differential Geom. Appl., 11:2 (1999), 117–128 | DOI | MR | Zbl

[10] Gibbons J., Tsarev S. P., “Conformal maps and reductions of the Benney equations”, Phys. Lett. A, 258:4–6 (1999), 263–271 | DOI | MR | Zbl

[11] Kodama Y., “A method for solving the dispersionless KP equation and its exact solutions”, Phys. Lett. A, 129 (1988), 223 ; “Solutions of the dispersionless Toda equation”, Phys. Lett. A, 147 (1990), 477 | DOI | MR | DOI | MR

[12] Kodama Y., Gibbons J., “A method for solving the dispersionless KP hierarchy and its exact solutions”, Phys. Lett. A, 135:3 (1989), 167 | DOI | MR

[13] Konopelchenko B., Martinez Alonso L., “$\bar{\partial}$-equations, integrable deformations of quasi-conformal mappings and Whitham hierarchy”, Phys. Lett. A, 286 (2001), 161 | DOI | MR | Zbl

[14] Konopelchenko B. G., Martinez Alonso L., “Nonlinear dynamics on the plane and integrable hierarchies of infinitesimal deformations”, Stud. Appl. Math., 109 (2002), 313–336 | DOI | MR | Zbl

[15] Konopelchenko B. G., Martinez Alonso L., Ragnisco O., “The $\bar{\partial}$-approach to the dispersionless KP hierarchy”, J. Phys. A, 34 (2001), 10209–10217 | DOI | MR | Zbl

[16] Konopelchenko B. G., Moro A., “Geometrical optics in nonlinear media and integrable equations”, J. Phys. A, 37 (2004), L105–L111 ; Konopelchenko B., Moro A., “Integrable equations in nonlinear geometrical optics”, Stud. Appl. Math., 2004 (to appear) ; Preprint, arXiv: nlin.SI/0403051 | DOI | MR | Zbl | MR

[17] Konopelchenko B. G., Pinkall U., “Integrable deformations of affine surfaces via Nizhnik–Veselov–Novikov equation”, Phys. Lett. A, 245 (1998), 239–245 | DOI | MR

[18] Konopelchenko B., Sidorenko J., Strampp W., “$1+1$ dimensional integrable systems as symmetry constraints of $2+1$ dimensional systems”, Phys. Lett. A, 157 (1991), 17 | DOI | MR

[19] Krichever I. M., “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Comm. Pure Appl. Math., 47 (1994), 437 | DOI | MR | Zbl

[20] Orlov A. Yu., “Vertex operator, $\bar{\partial}$-problem, symmetries, variational identities and Hamiltonian formalism for $2+1$ integrable systems”, Nonlinear and Turbulent Processes in Physics, ed. V. Baryakhtar, World Scientific, Singapore, 1988 | MR

[21] Singular Limits of Dispersive Waves, Nato Adv. Sci. Inst. Ser. B Phys., 320, eds. N. M. Ercolani et al., Plenum Press, New York, 1994 | MR