Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2003_9_3_a8, author = {A. V. Mikhalev and I. A. Pinchuk}, title = {The central closure of the simple ``strange'' {Lie} superalgebras extended over a~commutative algebra}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {125--131}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a8/} }
TY - JOUR AU - A. V. Mikhalev AU - I. A. Pinchuk TI - The central closure of the simple ``strange'' Lie superalgebras extended over a~commutative algebra JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2003 SP - 125 EP - 131 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a8/ LA - ru ID - FPM_2003_9_3_a8 ER -
%0 Journal Article %A A. V. Mikhalev %A I. A. Pinchuk %T The central closure of the simple ``strange'' Lie superalgebras extended over a~commutative algebra %J Fundamentalʹnaâ i prikladnaâ matematika %D 2003 %P 125-131 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a8/ %G ru %F FPM_2003_9_3_a8
A. V. Mikhalev; I. A. Pinchuk. The central closure of the simple ``strange'' Lie superalgebras extended over a~commutative algebra. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 125-131. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a8/
[1] Mikhalev A. V., Pinchuk I. A., “Universalnoe tsentralnoe rasshirenie odnoi osoboi superalgebry Li s nevyrozhdennoi formoi Killinga”, Universalnaya algebra i ee prilozheniya, Volgograd, 2000, 201–221
[2] Mikhalev A. V., Pinchuk I. A., “Universalnye tsentralnye rasshireniya superalgebr Li”, Tr. seminara im. I. G. Petrovskogo, 22, 2002, 261–282 | MR
[3] Iohara K., Kogti Y., “Central extensions of Lie superalgebras”, Comment. Math. Helv., 76 (2001), 110–154 | DOI | MR | Zbl
[4] Kac V. G., “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR | Zbl
[5] Mikhalev A. V., Pinchuk I. A., “Universal central extensions of the matrix Lie superalgebras $\mathrm{sla}(m,n,A)$”, Contemp. Math., 264 (2000), 111–125 | MR | Zbl