Algebraic geometry over free metabelian Lie algebras.~I. U-algebras and universal classes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 37-63
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is the first in a series of three, the object of which is to lay the foundations of algebraic geometry over the free metabelian Lie algebra $F$. In the current paper, we introduce the notion of a metabelian U-Lie algebra and establish connections between metabelian U-Lie algebras and special matrix Lie algebras. We define the $\Delta$-localization of a metabelian U-Lie algebra $A$ and the direct module extension of the Fitting radical of $A$ and show that these algebras lie in the universal closure of $A$.
@article{FPM_2003_9_3_a3,
author = {E. Yu. Daniyarova and I. V. Kazatchkov and V. N. Remeslennikov},
title = {Algebraic geometry over free metabelian {Lie} {algebras.~I.} {U-algebras} and universal classes},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {37--63},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a3/}
}
TY - JOUR AU - E. Yu. Daniyarova AU - I. V. Kazatchkov AU - V. N. Remeslennikov TI - Algebraic geometry over free metabelian Lie algebras.~I. U-algebras and universal classes JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2003 SP - 37 EP - 63 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a3/ LA - ru ID - FPM_2003_9_3_a3 ER -
%0 Journal Article %A E. Yu. Daniyarova %A I. V. Kazatchkov %A V. N. Remeslennikov %T Algebraic geometry over free metabelian Lie algebras.~I. U-algebras and universal classes %J Fundamentalʹnaâ i prikladnaâ matematika %D 2003 %P 37-63 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a3/ %G ru %F FPM_2003_9_3_a3
E. Yu. Daniyarova; I. V. Kazatchkov; V. N. Remeslennikov. Algebraic geometry over free metabelian Lie algebras.~I. U-algebras and universal classes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 37-63. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a3/