Algebraic geometry over free metabelian Lie algebras.~I. U-algebras and universal classes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 37-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the first in a series of three, the object of which is to lay the foundations of algebraic geometry over the free metabelian Lie algebra $F$. In the current paper, we introduce the notion of a metabelian U-Lie algebra and establish connections between metabelian U-Lie algebras and special matrix Lie algebras. We define the $\Delta$-localization of a metabelian U-Lie algebra $A$ and the direct module extension of the Fitting radical of $A$ and show that these algebras lie in the universal closure of $A$.
@article{FPM_2003_9_3_a3,
     author = {E. Yu. Daniyarova and I. V. Kazatchkov and V. N. Remeslennikov},
     title = {Algebraic geometry over free metabelian {Lie} {algebras.~I.} {U-algebras} and universal classes},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {37--63},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a3/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
AU  - I. V. Kazatchkov
AU  - V. N. Remeslennikov
TI  - Algebraic geometry over free metabelian Lie algebras.~I. U-algebras and universal classes
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 37
EP  - 63
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a3/
LA  - ru
ID  - FPM_2003_9_3_a3
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%A I. V. Kazatchkov
%A V. N. Remeslennikov
%T Algebraic geometry over free metabelian Lie algebras.~I. U-algebras and universal classes
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 37-63
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a3/
%G ru
%F FPM_2003_9_3_a3
E. Yu. Daniyarova; I. V. Kazatchkov; V. N. Remeslennikov. Algebraic geometry over free metabelian Lie algebras.~I. U-algebras and universal classes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 37-63. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a3/

[1] Artamonov V. A., “Proektivnye metabelevy algebry Li konechnogo ranga”, Izv. AN SSSR. Ser. mat., 36 (1972), 510–522 | MR | Zbl

[2] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[3] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR

[4] Daniyarova E. Yu., Kazachkov I. V., Remeslennikov V. N., Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li I: U-algebry i A-moduli, Preprint No 34, OmGAU, Omsk, 2001

[5] Leng S., Algebra, Mir, M., 1968

[6] Shmelkin A. L., “Spleteniya algebr Li i ikh primenenie v teorii grupp”, Trudy MMO, 29, 1973, 247–260

[7] Artamonov V. A., “The categories of free metabelian groups and Lie algebras”, Comment. Math. Univ. Carolin., 18:1 (1977), 142–159 | MR

[8] Baumslag G., Myasnikov A. G., Remeslennikov V. N., “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[9] Myasnikov A. G., Remeslennikov V. N., “Algebraic geometry over groups. II: Logical Foundations”, J. Algebra, 234 (2000), 225–276 | DOI | MR | Zbl