Almost isomorphism of Abelian groups and determinability of Abelian groups by their subgroups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 21-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

An Abelian group $A$ is called correct if for any Abelian group $B$ isomorphisms $A\cong B'$ and $B\cong A'$, where $A'$ and $B'$ are subgroups of the groups $A$ and $B$, respectively, imply the isomorphism $A\cong B$. We say that a group $A$ is determined by its subgroups (its proper subgroups) if for any group $B$ the existence of a bijection between the sets of all subgroups (all proper subgroups) of groups $A$ and $B$ such that corresponding subgroups are isomorphic implies $A\cong B$. In this paper, connections between the correctness of Abelian groups and their determinability by their subgroups (their proper subgroups) are established. Certain criteria of determinability of direct sums of cyclic groups by their subgroups and their proper subgroups, as well as a criterion of correctness of such groups, are obtained.
@article{FPM_2003_9_3_a2,
     author = {S. Ya. Grinshpon and A. K. Mordovskoi},
     title = {Almost isomorphism of {Abelian} groups and determinability of {Abelian} groups by their subgroups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {21--36},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a2/}
}
TY  - JOUR
AU  - S. Ya. Grinshpon
AU  - A. K. Mordovskoi
TI  - Almost isomorphism of Abelian groups and determinability of Abelian groups by their subgroups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 21
EP  - 36
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a2/
LA  - ru
ID  - FPM_2003_9_3_a2
ER  - 
%0 Journal Article
%A S. Ya. Grinshpon
%A A. K. Mordovskoi
%T Almost isomorphism of Abelian groups and determinability of Abelian groups by their subgroups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 21-36
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a2/
%G ru
%F FPM_2003_9_3_a2
S. Ya. Grinshpon; A. K. Mordovskoi. Almost isomorphism of Abelian groups and determinability of Abelian groups by their subgroups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 21-36. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a2/

[1] Borsuk K., Teoriya retraktov, Mir, M., 1971 | MR

[2] Grinshpon S. Ya., “f.i.-korrektnost abelevykh grupp bez krucheniya”, Abelevy gruppy i moduli, 1989, no. 8, 65–79 | MR

[3] Grinshpon S. Ya., “f.i.-korrektnye abelevy gruppy”, Uspekhi mat. nauk, 1999, no. 6, 155–156 | MR | Zbl

[4] Prikhodko I. A., “E-korrektnye abelevy gruppy”, Abelevy gruppy i moduli, 1984, 90–99 | MR

[5] Rososhek S. K., “Chisto korrektnye moduli”, Izv. vyssh. uchebn. zaved. Matematika, 1978, no. 10, 143–150 | MR

[6] Rososhek S. K., “Strogo chisto korrektnye abelevy gruppy bez krucheniya”, Abelevy gruppy i moduli, 1979, 143–150

[7] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974

[8] Sherstneva A. I., “$U$-posledovatelnosti i pochti izomorfizm abelevykh $p$-grupp po vpolne kharakteristicheskikh podgruppam”, Izv. vyssh. uchebn. zaved. Matematika, 2001, no. 5, 72–80 | MR | Zbl

[9] Bumby R., “Modules which isomorphic to submodules of each other”, Arch. Math., 16 (1965), 184–185 | DOI | MR | Zbl

[10] Cornel I., “Some ring theoretic Schroeder–Bernstein theorems”, Trans. Amer. Math. Soc., 132 (1968), 335–351 | DOI | MR

[11] Crawly P., “Solution of Kaplansky's test problem for primary Abelian groups”, J. Algebra, 1965, no. 4, 413–431 | DOI

[12] Eklof P., Sabbagh G., “Model-completions and modules”, Ann. Math. Log., 2 (1971), 251–299 | DOI | MR

[13] De Groot J., “Equivalent Abelian groups”, Canad. J. Math., 1957, no. 9, 291–297 | DOI | MR | Zbl

[14] Holzsager R., Hallahan C., “Mutual direct summands”, Arch. Math., 25 (1974), 591–592 | DOI | MR | Zbl

[15] Jonson B., “On direct decomposition of torsion free Abelian groups”, Math. Scand., 1959, no. 2, 361–371 | MR

[16] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan Press, Michigan, 1954 | MR | Zbl

[17] Trnkova V., Koubek V., “The Cantor–Bernstein theorem for functors”, Comment. Math. Univ. Carolin., 14 (1973), 197–204 | MR | Zbl