Factor and term ranks for matrix union over semirings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 175-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the arithmetic properties of the factor-rank and term-rank functions for matrices over semirings. In particular, we investigate the sets of matrices that satisfy the extremes of inequalities for these rank functions of matrix union. The classification of the linear transformations that keep these sets invariant is obtained.
@article{FPM_2003_9_3_a12,
     author = {O. A. Pshenitsyna},
     title = {Factor and term ranks for matrix union over semirings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {175--197},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a12/}
}
TY  - JOUR
AU  - O. A. Pshenitsyna
TI  - Factor and term ranks for matrix union over semirings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 175
EP  - 197
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a12/
LA  - ru
ID  - FPM_2003_9_3_a12
ER  - 
%0 Journal Article
%A O. A. Pshenitsyna
%T Factor and term ranks for matrix union over semirings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 175-197
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a12/
%G ru
%F FPM_2003_9_3_a12
O. A. Pshenitsyna. Factor and term ranks for matrix union over semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 175-197. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a12/

[1] Vechtomov E. M., Vvedenie v polukoltsa, VPGU, Kirov, 2000

[2] Chermnykh V. V., Polukoltsa, VPGU, Kirov, 1997

[3] Beasley LeRoy B., Guterman Alexander E., Linear Preservers of Extremes of Rank Inequalities over Semirings, Preprint | MR

[4] Beasley LeRoy B., Guterman Alexander E., Rank Inequalities over Semirings, Preprint | MR

[5] Ghosh S., “Matrices over semirings”, Inform. Sci., 90 (1996), 221–230 | DOI | MR | Zbl

[6] Glazek K., A Guide to the Literature on Semirings and their Applications in Mathematics and Information Sciences, Kluwer Academic Publishers, 2002 | MR | Zbl

[7] Golan J. S., Semirings and Their Applications, Updated and Expanded Version of the Theory of Semirings with Applications to Mathematics and Theoretical Computer Science, Kluwer Academic Publishers, Dordrecht, 1999 | MR

[8] Hebisch U., Weinert H. J., Semirings: Algebraic Theory and Applications in Computer Science, Series in Algebra, V, World Scientific, 1998 | MR | Zbl

[9] König D., Theorie der endlichen und unendlichen Graphen, Leipzig, 1936

[10] Mink H., “Permanents”, Linear and Multilinear Algebra, 6 (1978)

[11] Pierce S. and others, “A survey of linear preserver problems”, Linear and Multilinear Algebra, 33 (1992), 1–119 | Zbl