Isoperimetric functions and embeddings of groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 165-173

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we show that the embedding of groups almost preserves isoperimetric functions. More precisely, if $G$ is a known isoperimetric function group, then there exists an embedding of $G$ into a two-generated group $H$ such that the isoperimetric functions of the groups $G$ and $H$ are equivalent.
@article{FPM_2003_9_3_a11,
     author = {A. N. Platonov},
     title = {Isoperimetric functions and embeddings of groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {165--173},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a11/}
}
TY  - JOUR
AU  - A. N. Platonov
TI  - Isoperimetric functions and embeddings of groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 165
EP  - 173
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a11/
LA  - ru
ID  - FPM_2003_9_3_a11
ER  - 
%0 Journal Article
%A A. N. Platonov
%T Isoperimetric functions and embeddings of groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 165-173
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a11/
%G ru
%F FPM_2003_9_3_a11
A. N. Platonov. Isoperimetric functions and embeddings of groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 165-173. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a11/