Hidden matrix semirings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 13-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria analogous to Robson's and Fuchs' are given for a semiring to be izomorphic to a full matrix semiring. The necessity of additional conditions (compared with the case of rings) is investigated.
@article{FPM_2003_9_3_a1,
     author = {I. I. Bogdanov},
     title = {Hidden matrix semirings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {13--19},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a1/}
}
TY  - JOUR
AU  - I. I. Bogdanov
TI  - Hidden matrix semirings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 13
EP  - 19
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a1/
LA  - ru
ID  - FPM_2003_9_3_a1
ER  - 
%0 Journal Article
%A I. I. Bogdanov
%T Hidden matrix semirings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 13-19
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a1/
%G ru
%F FPM_2003_9_3_a1
I. I. Bogdanov. Hidden matrix semirings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 3, pp. 13-19. http://geodesic.mathdoc.fr/item/FPM_2003_9_3_a1/

[1] Chatters A. W., “Representation of tiled matrix rings as full matrix rings”, Math. Proc. Cambridge Phil. Soc., 105 (1989), 67–72 | DOI | MR | Zbl

[2] Fuchs P. R., “A characterization result for matrix rings”, Bull. Austral. Math. Soc., 43 (1991), 265–267 | DOI | MR | Zbl

[3] Golan J. S., The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, Pitman, 1991 | MR

[4] Mikhalev A. V., “Isomorphisms and antiisomorphisms of endomorphism rings of modules”, First International Tainan, Moscow Algebra Workshop, Walter de Gruyter, Berlin, New York, 1996, 70–122 | MR

[5] Robson J. C., “Recognition of matrix rings”, Comm. Algebra, 19:7 (1991), 2113–2124 | DOI | MR | Zbl