Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2003_9_2_a3, author = {A. N. Yakivchik}, title = {Some normality-type properties, topological products, and classes of continuous mappings}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {205--238}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a3/} }
TY - JOUR AU - A. N. Yakivchik TI - Some normality-type properties, topological products, and classes of continuous mappings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2003 SP - 205 EP - 238 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a3/ LA - ru ID - FPM_2003_9_2_a3 ER -
A. N. Yakivchik. Some normality-type properties, topological products, and classes of continuous mappings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 2, pp. 205-238. http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a3/
[1] Arkhangelskii A. V., “O bikompaktakh, kotorye udovletvoryayut usloviyu Suslina nasledstvenno. Tesnota i svobodnye posledovatelnosti”, DAN SSSR, 199 (1971), 1227–1230 | MR
[2] Arkhangelskii A. V., “Obschaya kontseptsiya rasscheplyaemosti topologicheskikh prostranstv nad klassom prostranstv”, V Tiraspolskii simpozium po obschei topologii i ee prilozheniyam, Shtiintsa, Kishinev, 1985, 8–10
[3] Arkhangelskii A. V., Shakhmatov D. B., “O potochechnoi approksimatsii proizvolnykh funktsii schetnymi semeistvami nepreryvnykh funktsii”, Tr. seminara im. I. G. Petrovskogo, 13, 1988, 206–227 | MR
[4] Banakh T. O., Fedorchuk V. V., O nasledstvennoi subnormalnosti nekotorykh prostranstv, Preprint, 2003
[5] Velichko N. V., “Zametka o peristykh prostranstvakh”, Czechoslovak Math. J., 25:1 (1975), 8–19 | MR | Zbl
[6] Kyunen K., “Kombinatorika”, Spravochnaya kniga po matematicheskoi logike. Ch. II. Teoriya mnozhestv, Nauka, M., 1982, 64–98 | MR
[7] Fedorchuk V. V., “K teoreme Katetova o kube”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1989, no. 4, 93–96 | MR | Zbl
[8] Shapirovskii B. E., “Kardinalnye invarianty v kompaktakh i otobrazheniya v spetsialnye podmnozhestva tikhonovskikh kubov”, Trudy Bakinskoi mezhdunarodnoi topologicheskoi konferentsii, Baku, 1989, 195–205 | MR
[9] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, Uspekhi mat. nauk, 36:3 (1981), 3–62 | MR | Zbl
[10] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR
[11] Yakivchik A. N., “Subnormalnye prostranstva i problema tipa Daukera”, Fundam. i prikl. mat., 4:1 (1998), 181–186 | MR | Zbl
[12] Arhangelskiĭ A. V., “Divisibility and cleavability of spaces”, Recent Developments of General Topology and its Applications. International Conference in Memory of Felix Hausdorff, Math. Research, 67, Akademie-Verlag, Berlin, 1992, 13–26 | MR
[13] Brandenburg H., “Separating closed sets by continuous mappings into developable spaces”, Canad. J. Math., 33:6 (1981), 1420–1431 | DOI | MR | Zbl
[14] Dowker C. H., “On countably paracompact spaces”, Canad. J. Math., 3:2 (1951), 219–224 | DOI | MR | Zbl
[15] Gartside P. M., Reznichenko E. A., “Katětov revisited”, Topol. Appl., 108:1 (2000), 67–74 | DOI | MR | Zbl
[16] Gruenhage G., Nyikos P., “Normality in $X^2$ for compact $X$”, Trans. Amer. Math. Soc., 340 (1993), 563–586 | DOI | MR | Zbl
[17] Heldermann N. C., “The category of $D$-completely regular spaces is simple”, Trans. Amer. Math. Soc., 262 (1980), 437–446 | DOI | MR | Zbl
[18] Hirata Y., Kemoto N., “Separating by $G_\delta$-sets in finite powers of $\omega_1$”, Fund. Math., 177 (2003), 83–94 | DOI | MR | Zbl
[19] Juhász I., Szentmiklóssy Z., “Convergent free sequences in compact spaces”, Proc. Amer. Math. Soc., 116:4 (1992), 1153–1160 | DOI | MR | Zbl
[20] Katětov M., “Complete normality of Cartesian products”, Fund. Math., 35 (1948), 271–274 | MR | Zbl
[21] Kemoto N., “Subnormality in $\omega_1^2$”, Topol. Appl., 122 (2002), 287–296 | DOI | MR | Zbl
[22] Kramer T. R., “A note on countably subparacompact spaces”, Pacific J. Math., 46 (1973), 209–213 | MR | Zbl
[23] Larson P., Todorčević S., “Katětov's problem”, Trans. Amer. Math. Soc., 354 (2002), 1783–1791 | DOI | MR | Zbl
[24] Michael E., “The product of a normal space and a metric space need not be normal”, Bull. Amer. Math. Soc., 63:3 (1963), 375–376 | DOI | MR
[25] Morita K., “Products of normal spaces with metric spaces”, Math. Ann., 154:4 (1964), 365–382 | DOI | MR | Zbl
[26] Mrówka S., “On completely regular spaces”, Fund. Math., 41 (1954), 105–106 | MR | Zbl
[27] Nyikos P., “A compact nonmetrisable space $P$ such that $P^2$ is completely normal”, Topol. Proc., 2 (1977), 359–363 | MR
[28] Rudin M. E., “A normal space $X$ for which $X \times I$ is not normal”, Fund. Math., 73 (1971), 179–186 | MR | Zbl
[29] Rudin M. E., “Dowker spaces”, Handbook of Set-Theoretic Topology, eds. K. Kunen, J. E. Vaughan, North-Holland, Amsterdam, 1984, 761–780 | MR
[30] Swardson M. A., “A note on the closed character of a topological space”, Topol. Proc., 4 (1979), 601–608 | MR
[31] Szeptycki P. J., “Weak normality in Dowker spaces”, Topol. Proc., 20 (1995), 289–296 | MR | Zbl
[32] Szeptycki P. J., Weiss W. A. R., “Dowker spaces”, The Work of Mary Ellen Rudin, ed. F. D. Tall, New York Acad. Sci., New York, 1993, 119–130 | MR
[33] Tamano H., “On paracompactness”, Pacific J. Math., 10:3 (1960), 1043–1047 | MR | Zbl
[34] Yajima Y., “Analogous results to two classical characterizations of covering properties by products”, Topol. Appl., 84 (1998), 3–7 | DOI | MR | Zbl