Normality-type properties and covariant functors
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 2, pp. 57-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological properties similar to normality are considered in subspaces of products and powers of topological spaces, of spaces of closed subsets, and of spaces having the form $\mathcal{F}(X)$, where $\mathcal{F}$ is a normal functor.
@article{FPM_2003_9_2_a1,
     author = {A. P. Kombarov},
     title = {Normality-type properties and covariant functors},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {57--98},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a1/}
}
TY  - JOUR
AU  - A. P. Kombarov
TI  - Normality-type properties and covariant functors
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 57
EP  - 98
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a1/
LA  - ru
ID  - FPM_2003_9_2_a1
ER  - 
%0 Journal Article
%A A. P. Kombarov
%T Normality-type properties and covariant functors
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 57-98
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a1/
%G ru
%F FPM_2003_9_2_a1
A. P. Kombarov. Normality-type properties and covariant functors. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 2, pp. 57-98. http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a1/

[1] Aleksandrov P. S., Uryson P. S., Memuar o kompaktnykh topologicheskikh prostranstvakh, Nauka, M., 1971 | MR

[2] Arkhangelskii A. V., “Ob odnom klasse prostranstv, soderzhaschem vse metricheskie i vse lokalno bikompaktnye prostranstva”, Mat. sb., 67 (1965), 55–85

[3] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR

[4] Basmanov V. N., “O funktorakh, perevodyaschikh svyaznye $ANR$-bikompakty v odnosvyaznye prostranstva”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1984, no. 6, 40–42 | MR | Zbl

[5] Velichko N. V., “O prostranstve zamknutykh podmnozhestv”, Sib. mat. zhurn., 16 (1975), 627–629 | Zbl

[6] Gulko S. P., “O svoistvakh mnozhestv, lezhaschikh v $\Sigma$-proizvedeniyakh”, DAN SSSR, 237 (1977), 505–508 | MR

[7] Zhuraev T. F., “Normalnye funktory i metrizuemost bikompaktov”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2000, no. 4, 8–11 | MR | Zbl

[8] Ivanova V. M., “K teorii prostranstv podmnozhestv”, DAN SSSR, 101 (1955), 601–603 | MR | Zbl

[9] Kombarov A. P., “O tesnote i normalnosti $\Sigma$-proizvedenii”, DAN SSSR, 239 (1978), 775–778 | MR | Zbl

[10] Kombarov A. P., “Tesnota parakompaktnykh $k$-prostranstv i schetnaya parakompaktnost $F_{\sigma}$-mnozhestv v proizvedeniyakh”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1990, no. 3, 87–89 | MR | Zbl

[11] Kombarov A. P., “Psevdonormalnost $F_\sigma$-podmnozhestv $X^2\setminus\Delta$”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1991, no. 1, 85–87 | MR

[12] Kombarov A. P., Malykhin V. I., “O $\Sigma$-proizvedeniyakh”, DAN SSSR, 213 (1973), 774–776 | MR | Zbl

[13] Malykhin V. I., “O tesnote i chisle Suslina v $\exp X$ i v proizvedenii prostranstv”, DAN SSSR, 203 (1972), 1001–1003 | Zbl

[14] Malykhin V. I., Shapirovskii B. E., “Aksioma Martina i svoistva topologicheskikh prostranstv”, DAN SSSR, 213 (1973), 532–535 | Zbl

[15] Malykhin D. V., “Schetno kompaktnoe $\nabla$-normalnoe prostranstvo imeet schetnyi kharakter”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1997, no. 5, 31–33 | MR | Zbl

[16] Pontryagin L. S., Nepreryvnye gruppy, M.–L., 1938

[17] Popov V. V., “O prostranstve zamknutykh podmnozhestv”, DAN SSSR, 229:5 (1976), 1051–1054 | MR | Zbl

[18] Fedorchuk V. V., “K teoreme Katetova o kube”, Vestnik Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1989, no. 4, 93–96 | MR | Zbl

[19] Fedorchuk V. V., Filippov V. V., Obschaya topologiya, Izd-vo Mosk. un-ta, M., 1988 | Zbl

[20] Choban M. M., Mnogoznachnye otobrazheniya i ikh prilozheniya, Diss. $\dots$ dokt. fiz.-mat. nauk, Tbilisi, 1979

[21] Shapirovskii B. E., “O prostranstvakh s usloviem Suslina i Shanina”, Mat. zametki, 15:2 (1974), 281–288

[22] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, Uspekhi mat. nauk, 36 (1981), 3–62 | Zbl

[23] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[24] Arhangel'skii A. V., Kombarov A. P., “On $\nabla$-normal spaces”, Topol. Appl., 35 (1990), 121–126 | DOI | MR

[25] Arhangel'skii A. V., “Divisibility and cleavability of spaces”, Recent developments of general topology and its applications (Berlin, 1992), Math. Res., 67, Akademie-Verlag,, Berlin, 1992, 13–26 | MR

[26] Brandenburg H., “Separating closed sets by continuous mappings into developable spaces”, Canad. J. Math., 33 (1981), 1420–1431 | DOI | MR | Zbl

[27] Chaber J., “Conditions which imply compactness in countably compact spaces”, Bull. Acad. Polon. Sci. Ser. Sci. Math., Astronom., Phys., 24 (1976), 993–998 | MR

[28] Chiba K., “The strong paracompactness of $\sigma$-products”, Sci. Math., 2 (1999), 285–292 | MR | Zbl

[29] Corson H. H., “Normality in subsets of product spaces”, Amer. J. Math., 81 (1959), 785–796 | DOI | MR | Zbl

[30] Daniel T., Gruenhage G., “Some nonnormal $\Sigma$-products”, Topol. Appl., 43 (1992), 19–25 | DOI | MR | Zbl

[31] Van Douwen E. K., “The Pixley–Roy topology on spaces of subsets”, Set-Theoretic Topology, ed. G. M. Reed, Academic Press, New York, 1977, 111–134 | MR

[32] Van Douwen E. K., “Covering and separation properties of box products”, Surveys in General Topology, ed. G. M. Reed, Academic Press, New York, 1980, 55–129 | MR

[33] Van Douwen E. K., “The integers and topology”, Handbook of Set-Theoretic Topology, eds. K. Kunen and J. E. Vaughan, North-Holland, Amsterdam, 1984, 111–167 | MR

[34] Eda K., Gruenhage G., Koszmider P., Tamano K., “Todorčević S.”, Topol. Appl., 67 (1995), 189–220 | DOI | MR | Zbl

[35] Engelking R., “On functions defined on Cartesian products”, Fund. Math., 59 (1966), 221–231 | MR | Zbl

[36] Glicksberg I., “Stone–Čech compactifications of products”, Trans. Amer. Math. Soc., 90 (1959), 369–382 | DOI | MR | Zbl

[37] Good C., Tree I. J., “On ${\delta}$-normality”, Topol. Appl., 56 (1994), 117–127 | DOI | MR | Zbl

[38] Gruenhage G., “Covering properties on $X^2\setminus\Delta$, $W$-sets, and compact subsets of $\Sigma$-products”, Topol. Appl., 17 (1984), 287–304 | DOI | MR | Zbl

[39] Gruenhage G., Nyikos P. J., “Normality in $X^2$ for compact $X$”, Trans. Amer. Math. Soc., 340 (1993), 563–586 | DOI | MR | Zbl

[40] K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984 | MR | Zbl

[41] Katětov M., “Complete normality of Cartesian products”, Fund. Math., 35 (1948), 271–274 | MR | Zbl

[42] Keesling J., “On the equivalence of normality and compactness in hyperspaces”, Pacific J. Math., 33 (1970), 657–667 | MR | Zbl

[43] Kister J. M., “Uniform continuity and compactness in topological groups”, Proc. Amer. Math. Soc., 13 (1962), 37–40 | DOI | MR | Zbl

[44] Kombarov A. P., “On expandable discrete collections”, Topol. Appl., 69 (1996), 283–292 | DOI | MR | Zbl

[45] Kombarov A. P., “On $F_{\sigma}$-${\delta}$-normality and hereditary ${\delta}$-normality”, Topol. Appl., 91 (1999), 221–226 | DOI | MR | Zbl

[46] Kombarov A. P., “Normal functors and generalized normality”, International Conference on Functional Analysis and its Applications (Dedicated to the 110th anniversary of Stefan Banach), Abstracts, Lviv, Ukraine, 2002, 109

[47] Larson P., Todorčević S., “Katětov's problem”, Trans. Amer. Math. Soc., 354 (2002), 1783–1791 | DOI | MR | Zbl

[48] Mack J., “Countable paracompactness and weak normality properties”, Trans. Amer. Math. Soc., 148 (1970), 265–272 | DOI | MR | Zbl

[49] Noble N., “Products with closed projections, II”, Trans. Amer. Math. Soc., 160 (1971), 169–183 | DOI | MR | Zbl

[50] Nogura T., “Tightness of compact Hausdorff spaces and normality of product spaces”, J. Math. Soc. Japan, 28 (1976), 360–362 | DOI | MR | Zbl

[51] Nyikos P., “A compact nonmetrizable space $P$ such that $P^2$ is completely normal”, Topol. Proc., 2 (1977), 359–363 | MR

[52] Pareek C. M., “Characterizations of $p$-spaces”, Canad. Math. Bull., 14 (1971), 459–460 | DOI | MR | Zbl

[53] Proctor C. W., “A separable pseudonormal nonmetrizable Moore space”, Bull. Acad. Polon. Sci. Ser. Sci. Math., Astronom., Phys., 18 (1970), 179–181 | MR | Zbl

[54] Stone A. H., “Paracompactness and product spaces”, Bull. Amer. Math. Soc., 54 (1948), 977–982 | DOI | MR | Zbl

[55] Vietoris L., “Bereiche zweiter Ordnung”, Monatsh. Math. Phys., 1922, no. 32, 258–280 | DOI | MR | Zbl

[56] Weiss W., “Countably compact spaces and Martin's axiom”, Canad. J. Math., 30 (1978), 243–249 | DOI | MR | Zbl

[57] Zenor P., “Countable paracompactness in product spaces”, Proc. Amer. Math. Soc., 30 (1971), 199–201 | DOI | MR | Zbl

[58] Zenor P., “Countable paracompactness of $F_{\sigma}$-sets”, Proc. Amer. Math. Soc., 55 (1976), 201–202 | DOI | MR | Zbl