$\lambda$-topologies on function spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 2, pp. 3-56

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the spaces $C_{\lambda}(X)$ of all continuous real-valued functions on $X$ endowed with arbitrary $\lambda$-topologies. This is a fairly complete survey of the results obtained by the author in the following domains of the theory of $\lambda$-topologies: cardinal functions; locally convex properties; weak and strong topologies; dual spaces; lattices of $\lambda$-topologies; completeness.
@article{FPM_2003_9_2_a0,
     author = {N. V. Velichko},
     title = {$\lambda$-topologies on function spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--56},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a0/}
}
TY  - JOUR
AU  - N. V. Velichko
TI  - $\lambda$-topologies on function spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 3
EP  - 56
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a0/
LA  - ru
ID  - FPM_2003_9_2_a0
ER  - 
%0 Journal Article
%A N. V. Velichko
%T $\lambda$-topologies on function spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 3-56
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a0/
%G ru
%F FPM_2003_9_2_a0
N. V. Velichko. $\lambda$-topologies on function spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 2, pp. 3-56. http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a0/