$\lambda$-topologies on function spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 2, pp. 3-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the spaces $C_{\lambda}(X)$ of all continuous real-valued functions on $X$ endowed with arbitrary $\lambda$-topologies. This is a fairly complete survey of the results obtained by the author in the following domains of the theory of $\lambda$-topologies: cardinal functions; locally convex properties; weak and strong topologies; dual spaces; lattices of $\lambda$-topologies; completeness.
@article{FPM_2003_9_2_a0,
     author = {N. V. Velichko},
     title = {$\lambda$-topologies on function spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--56},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a0/}
}
TY  - JOUR
AU  - N. V. Velichko
TI  - $\lambda$-topologies on function spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 3
EP  - 56
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a0/
LA  - ru
ID  - FPM_2003_9_2_a0
ER  - 
%0 Journal Article
%A N. V. Velichko
%T $\lambda$-topologies on function spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 3-56
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a0/
%G ru
%F FPM_2003_9_2_a0
N. V. Velichko. $\lambda$-topologies on function spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 2, pp. 3-56. http://geodesic.mathdoc.fr/item/FPM_2003_9_2_a0/

[1] Arkhangelskii A. V., Topologicheskie prostranstva funktsii, Izd-vo Mosk. un-ta, M., 1989 | MR

[2] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[3] Asanov M. O., “O prostranstvakh nepreryvnykh otobrazhenii”, Izv. vyssh. uchebn. zaved. Matem., 1980, no. 4, 6–10 | MR | Zbl

[4] Asanov M. O., “O kardinalnykh invariantakh prostranstv nepreryvnykh funktsii”, Sovremennaya topologiya i teoriya mnozhestv, T. 2, Izhevsk, 1979, 8–12 | Zbl

[5] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981 | MR

[6] Schmets J., Espaces de Fonctions Continues, Lect. Notes Math., 514, Springer, Berlin, 1976 | MR

[7] Arkhangelskii A. V., “Stroenie i klassifikatsiya topologicheskikh prostranstv i kardinalnye invarianty”, Uspekhi mat. nauk, 33:6 (1978), 29–84 | MR

[8] Velichko N. V., “O teorii prostranstv nepreryvnykh funktsii”, Trudy Mat. in-ta im. V. A. Steklova, 3, 1993, 57–63 | MR

[9] Velichko N. V., “$C(X)$ in the weak topology”, Georgian Math. J., 2 (1995), 653–658 | DOI | MR

[10] Velichko N. V., “O semeistve $\lambda$-topologii na prostranstve funktsii”, Sib. mat. zhurn., 39:3 (1998), 490–500 | MR | Zbl

[11] Velichko N. V., “Zamechaniya po $C_{\lambda}(X)$”, Izv. In-ta matem. i inf. UdGU, 1998, no. 3(14), 46–48

[12] Velichko N. V., “O sekventsialnoi polnote $C_{\lambda}(X)$”, Fundam. i prikl. mat., 4:1 (1998), 39–47 | MR | Zbl

[13] Velichko N. V., “O silnoi topologii $C_{\lambda}(X)$”, Trudy IMM, 5, 1998, 67–75 | Zbl

[14] Velichko N. V., “On spaces $C_{\lambda}(X)$”, Topol. and Its Appl., 107 (2000), 191–195 | DOI | MR | Zbl

[15] Engelking R., General Topology, PWN, Warszawa, 1977 | MR | Zbl

[16] Bushwalter H., Schmets J., “Sur quelques propriétés de l'espace”, J. Math. Pures Appl., 52 (1973), 337–352 | MR

[17] Grothendieck A., “Criteres generaux de compacite les espaces fontionels generaux”, Amer. J. Math., 74 (1952), 165–186 | DOI | MR

[18] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961

[19] Semadeni Z., Banach spaces of continuous functions, PWN, Warszawa, 1971 | Zbl

[20] Dobrowolski T., Marciszewski W., Mogilski J., “On topological classification of function spaces $C_p(X)$ of low Borel complexity”, Trans. Amer. Math. Soc., 328:1 (1991), 307–324 | DOI | MR | Zbl