Hopf algebras of linear recurring sequences over rings and modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 113-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

The module of linear recurring sequences over a commutative ring $R$ can be considered as a Hopf algebra dual to the polynomial Hopf algebra over $R$. Under this approach, some notions and operations from the Hopf algebra theory have an interesting interpretation in terms of linear recurring sequences. Generalizations are also considered: linear recurring bisequences, sequences over modules, and $k$-sequences.
@article{FPM_2003_9_1_a9,
     author = {V. L. Kurakin},
     title = {Hopf algebras of linear recurring sequences over rings and modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {113--148},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a9/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Hopf algebras of linear recurring sequences over rings and modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 113
EP  - 148
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a9/
LA  - ru
ID  - FPM_2003_9_1_a9
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Hopf algebras of linear recurring sequences over rings and modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 113-148
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a9/
%G ru
%F FPM_2003_9_1_a9
V. L. Kurakin. Hopf algebras of linear recurring sequences over rings and modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 113-148. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a9/

[1] Artamonov V. A., “Stroenie algebr Khopfa”, Itogi nauki i tekhniki. Algebra, geometriya, topologiya, 29, VINITI, M., 1991, 3–63 | MR

[2] Bakhturin Yu. A., Osnovnye struktury sovremennoi algebry, Nauka, M., 1990 | MR | Zbl

[3] Kurakin V. L., “Konvolyutsiya lineinykh rekurrentnykh posledovatelnostei”, Uspekhi mat. nauk, 48:4 (1993), 235–236 | MR | Zbl

[4] Kurakin V. L., “Stroenie algebr Khopfa lineinykh rekurrentnykh posledovatelnostei”, Uspekhi mat. nauk, 48:5 (1993), 177–178 | MR | Zbl

[5] Kurakin V. L., “Algebry Khopfa lineinykh rekurrentnykh posledovatelnostei nad kommutativnymi koltsami”, Trudy Vtorykh matematicheskikh chtenii MGSU (Nakhabino, 26 yanvarya–2 fevralya 1994 g.), M., 1994, 67–69

[6] Kurakin V. L., “Algebra Khopfa, dualnaya k algebre mnogochlenov nad kommutativnym koltsom” (to appear)

[7] Abuhlail J. Y., Gómez-Torrecillas J., Wisbauer R., “Dual coalgebras of algebras over commutative rings”, J. Pure and Appl. Algebra, 153 (2000), 107–120 | DOI | MR | Zbl

[8] Cerlienco L., Piras F., “On the continuous dual of a polynomial bialgebra”, Comm. Algebra, 19:10 (1991), 2707–2727 | DOI | MR | Zbl

[9] Chin W., Goldman J., “Bialgebras of lineary recursive sequences”, Comm. Algebra, 21:11 (1993), 3935–3952 | DOI | MR | Zbl

[10] Haukkanen P., “On a convolution of linear recurring sequences over finite fields, I, II”, J. Algebra, 149:1 (1992), 179–182 ; 164:2 (1994), 542–544 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, Journal of Mathematical Sciences, 76:6 (1995), 2793–2915 | DOI | MR | Zbl

[12] Kurakin V. L., Mikhalev A. V., Nechaev A. A., Tsypyschev V. N., “Linear and polylinear recurring sequences over abelian groups and modules”, Journal of Mathematical Sciences, 102:6 (2000), 4598–4627 | MR

[13] Peterson B., Taft E. Y., “The Hopf algebra of linear recursive sequences”, Aequat. Math., 20 (1980), 1–17 | DOI | MR | Zbl

[14] Snapper E., “Completely primary rings, I”, Ann. Math., 52:3 (1950), 666–693 | DOI | MR

[15] Sweedler M. F., Hopf algebras, Benjamin, New York, 1969 | MR | Zbl

[16] Zierler N., Mills W. H., “Products of linear recurring sequences”, J. Algebra, 27:1 (1973), 147–157 | DOI | MR | Zbl