Hopf algebras of linear recurring sequences over rings and modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 113-148

Voir la notice de l'article provenant de la source Math-Net.Ru

The module of linear recurring sequences over a commutative ring $R$ can be considered as a Hopf algebra dual to the polynomial Hopf algebra over $R$. Under this approach, some notions and operations from the Hopf algebra theory have an interesting interpretation in terms of linear recurring sequences. Generalizations are also considered: linear recurring bisequences, sequences over modules, and $k$-sequences.
@article{FPM_2003_9_1_a9,
     author = {V. L. Kurakin},
     title = {Hopf algebras of linear recurring sequences over rings and modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {113--148},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a9/}
}
TY  - JOUR
AU  - V. L. Kurakin
TI  - Hopf algebras of linear recurring sequences over rings and modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 113
EP  - 148
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a9/
LA  - ru
ID  - FPM_2003_9_1_a9
ER  - 
%0 Journal Article
%A V. L. Kurakin
%T Hopf algebras of linear recurring sequences over rings and modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 113-148
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a9/
%G ru
%F FPM_2003_9_1_a9
V. L. Kurakin. Hopf algebras of linear recurring sequences over rings and modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 113-148. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a9/