Hopf algebras of linear recurring sequences over rings and modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 113-148
Voir la notice de l'article provenant de la source Math-Net.Ru
The module of linear recurring sequences over a commutative ring $R$ can be considered as a Hopf algebra dual to the polynomial Hopf algebra over $R$. Under this approach, some notions and operations from the Hopf algebra theory have an interesting interpretation in terms of linear recurring sequences. Generalizations are also considered: linear recurring bisequences, sequences over modules, and $k$-sequences.
@article{FPM_2003_9_1_a9,
author = {V. L. Kurakin},
title = {Hopf algebras of linear recurring sequences over rings and modules},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {113--148},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a9/}
}
V. L. Kurakin. Hopf algebras of linear recurring sequences over rings and modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 113-148. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a9/