On duality in the homology algebra of a~Koszul complex
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 77-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homology algebra of the Koszul complex $K(x_1,\ldots,x_n;R)$ of a Gorenstein local ring $R$ has Poincaré duality if the ideal $I=(x_1,\ldots,x_n)$ of $R$ is strongly Cohen–Macaulay (i.e., all homology modules of the Koszul complex are Cohen–Macaulay) and under the assumption that $\dim R-\operatorname{grade}I\leq4$ the converse is also true.
@article{FPM_2003_9_1_a6,
     author = {E. S. Golod},
     title = {On duality in the homology algebra of {a~Koszul} complex},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {77--81},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a6/}
}
TY  - JOUR
AU  - E. S. Golod
TI  - On duality in the homology algebra of a~Koszul complex
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 77
EP  - 81
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a6/
LA  - ru
ID  - FPM_2003_9_1_a6
ER  - 
%0 Journal Article
%A E. S. Golod
%T On duality in the homology algebra of a~Koszul complex
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 77-81
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a6/
%G ru
%F FPM_2003_9_1_a6
E. S. Golod. On duality in the homology algebra of a~Koszul complex. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 77-81. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a6/

[1] Avramov L. L., Golod E. S., “Ob algebre gomologii kompleksa Kozyulya lokalnogo koltsa Gorenshteina”, Mat. zametki, 9:1 (1971), 53–58 | MR | Zbl

[2] Auslander M., Bridger M., Stable module theory, Mem. Amer. Math. Soc., 94, 1969 | MR | Zbl

[3] Tate J., “Homology of Noetherian rings and local rings”, Illinois J. Math., 1:1 (1957), 14–27 | MR | Zbl