On duality in the homology algebra of a Koszul complex
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 77-81
Cet article a éte moissonné depuis la source Math-Net.Ru
The homology algebra of the Koszul complex $K(x_1,\ldots,x_n;R)$ of a Gorenstein local ring $R$ has Poincaré duality if the ideal $I=(x_1,\ldots,x_n)$ of $R$ is strongly Cohen–Macaulay (i.e., all homology modules of the Koszul complex are Cohen–Macaulay) and under the assumption that $\dim R-\operatorname{grade}I\leq4$ the converse is also true.
@article{FPM_2003_9_1_a6,
author = {E. S. Golod},
title = {On duality in the homology algebra of {a~Koszul} complex},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {77--81},
year = {2003},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a6/}
}
E. S. Golod. On duality in the homology algebra of a Koszul complex. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 77-81. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a6/
[1] Avramov L. L., Golod E. S., “Ob algebre gomologii kompleksa Kozyulya lokalnogo koltsa Gorenshteina”, Mat. zametki, 9:1 (1971), 53–58 | MR | Zbl
[2] Auslander M., Bridger M., Stable module theory, Mem. Amer. Math. Soc., 94, 1969 | MR | Zbl
[3] Tate J., “Homology of Noetherian rings and local rings”, Illinois J. Math., 1:1 (1957), 14–27 | MR | Zbl