On sums of radical and regular rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 71-75
Cet article a éte moissonné depuis la source Math-Net.Ru
We find conditions which ensure that a ring is adjoint regular provided that it is a sum of a radical subring with an adjoint regular subring. We also provide a criterion of adjoint regularity for a ring which is a sum of its radical and a regular subring.
@article{FPM_2003_9_1_a5,
author = {M. V. Volkov and G. V. Tanana},
title = {On sums of radical and regular rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {71--75},
year = {2003},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a5/}
}
M. V. Volkov; G. V. Tanana. On sums of radical and regular rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 71-75. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a5/
[1] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR
[2] Clark W. E., “Generalized radical rings”, Canad. J. Math., 20:1 (1968), 88–94 | DOI | MR | Zbl
[3] Du Xiankun, “The structure of generalized radical rings”, Northeastern Math. J., 4:1 (1988), 101–114 | MR | Zbl
[4] Du Xiankun, “The rings with regular adjoint semigroups”, Northeastern Math. J., 4:4 (1988), 483–488 | MR