On sums of radical and regular rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 71-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find conditions which ensure that a ring is adjoint regular provided that it is a sum of a radical subring with an adjoint regular subring. We also provide a criterion of adjoint regularity for a ring which is a sum of its radical and a regular subring.
@article{FPM_2003_9_1_a5,
     author = {M. V. Volkov and G. V. Tanana},
     title = {On sums of radical and regular rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {71--75},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a5/}
}
TY  - JOUR
AU  - M. V. Volkov
AU  - G. V. Tanana
TI  - On sums of radical and regular rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 71
EP  - 75
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a5/
LA  - ru
ID  - FPM_2003_9_1_a5
ER  - 
%0 Journal Article
%A M. V. Volkov
%A G. V. Tanana
%T On sums of radical and regular rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 71-75
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a5/
%G ru
%F FPM_2003_9_1_a5
M. V. Volkov; G. V. Tanana. On sums of radical and regular rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 71-75. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a5/

[1] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[2] Clark W. E., “Generalized radical rings”, Canad. J. Math., 20:1 (1968), 88–94 | DOI | MR | Zbl

[3] Du Xiankun, “The structure of generalized radical rings”, Northeastern Math. J., 4:1 (1988), 101–114 | MR | Zbl

[4] Du Xiankun, “The rings with regular adjoint semigroups”, Northeastern Math. J., 4:4 (1988), 483–488 | MR