Density theorems for graded rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 27-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to prove three density theorems for rings graded by semigroups and modules graded by acts over these semigroups with some cancellation conditions. In addition, the density theorem for superrings and supermodules is proved.
@article{FPM_2003_9_1_a2,
     author = {I. N. Balaba and S. V. Zelenov and S. V. Limarenko and A. V. Mikhalev},
     title = {Density theorems for graded rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {27--49},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a2/}
}
TY  - JOUR
AU  - I. N. Balaba
AU  - S. V. Zelenov
AU  - S. V. Limarenko
AU  - A. V. Mikhalev
TI  - Density theorems for graded rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2003
SP  - 27
EP  - 49
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a2/
LA  - ru
ID  - FPM_2003_9_1_a2
ER  - 
%0 Journal Article
%A I. N. Balaba
%A S. V. Zelenov
%A S. V. Limarenko
%A A. V. Mikhalev
%T Density theorems for graded rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2003
%P 27-49
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a2/
%G ru
%F FPM_2003_9_1_a2
I. N. Balaba; S. V. Zelenov; S. V. Limarenko; A. V. Mikhalev. Density theorems for graded rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 27-49. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a2/

[1] Avraamova O. D., “Obobschennaya teorema plotnosti”, Abelevy gruppy i moduli, vypusk 8, Izdatelstvo Tomskogo universiteta, Tomsk, 1989, 3–16 | MR

[2] Balaba I. N., “Graduirovannye slaboprimitivnye koltsa”, Sovremennye problemy teorii chisel i ee prilozheniya, Tezisy dokladov III Mezhdunarodnoi konferentsii, Tula, 1996, 12

[3] Dzhekobson N., Stroenie kolets, Izdatelstvo inostrannoi literatury, M., 1961 | MR

[4] Zelenov S. V., “Teorema plotnosti v graduirovannom sluchae”, Kurosh Algebraic Conference '98, Abstracts of Talks, MGU, Mekhaniko-matematicheskii fakultet, M., 1998, 174

[5] Zelenov S. V., “Teorema slaboi plotnosti v graduirovannom sluchae”, Trudy 6-kh matematicheskikh chtenii MGSU, M., 1999, 107–110 | MR

[6] Zelenov S. V., “Graduirovannaya versiya teoremy plotnosti Zelmanovicha”, Tezisy dokladov, predstavlennykh na mezhdunarodnyi seminar, posvyaschennyi 70-letiyu kafedry vysshei algebry MGU (10–12 fevralya 1999 g.), Izdatelstvo mekhaniko-matematicheskogo fakulteta MGU, M., 1999, 25–26

[7] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[8] Abrams G., Menini C., del Rio A., “Realization theorems for categories of graded modules over semigroup-graded rings”, Comm. Algebra, 22:13 (1994), 5343–5388 | DOI | MR | Zbl

[9] Beidar K. I., Martindale W. S., III, Mikhalev A. V., Rings with Generalized Identities, Marcel Dekker, Inc., New York, 1996 | MR | Zbl

[10] Gomez Pardo J. L., Nastasescu C., “Topological aspect of graded rings”, Comm. Algebra, 21:12 (1993), 4481–4493 | DOI | MR | Zbl

[11] Faith C., Lectures on injective modules and quotient rings, Lecture Notes in Math., 49, Springer-Verlag, Berlin, New York, 1967 | MR

[12] Johnson R. E., “Representations of prime rings”, Trans. Amer. Math. Soc., 74:2 (1953), 351–357 | DOI | MR | Zbl

[13] Kilp M., Knauner U., Mikhalev A. V., Monoids, acts and categories with applications to wreath products and graphs, de Gruyter, Berlin, New York, 2000 | MR | Zbl

[14] Koh K., Luh J., “On a finite dimensional quasi-simple module”, Proc. Amer. Math. Soc., 25:4 (1970), 801–807 | DOI | MR | Zbl

[15] Koh K., Mewborn A. C., “Prime rings with maximal annihilator and maximal complement right ideals”, Proc. Amer. Math. Soc., 16:5 (1965), 1073–1076 | DOI | MR | Zbl

[16] Koh K., Mewborn A. C., “A class of prime prime rings”, Canad. Math. Bull., 9:1 (1966), 63–72 | DOI | MR

[17] Nǎstǎsescu C., van Oystaeyen F., Graded Ring Theory, Mathematical Library, 28, North-Holland, Amsterdam, 1982 | MR

[18] Nǎstǎsescu C., Raianu S., van Oystaeyen F., “Modules graded by G-sets”, Math. Z., 203:4 (1990), 605–627 | MR

[19] Liu Shaoxue, Beattie M., Fang Hongjin, “Graded division rings and the Jacobson density theorem”, Journal of Beijing Normal University (Natural Science), 27:2 (1991), 129–134 | MR | Zbl

[20] Zelmanowitz J., “An extension of the Jacobson density theorem”, Bull. Amer. Math. Soc., 88:4 (1976), 551–553 | DOI | MR

[21] Zelmanowitz J., “Weakly primitive rings”, Comm. Algebra, 9:1 (1981), 23–45 | DOI | MR | Zbl

[22] Zhu, Bin, “Graded primitive ring and Kaplansky's theorem”, Beijing Shuifan Daxue Xuebao, 34:1 (1998), 1–5 | MR