On extensions of AO-groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 277-281
The notion of an extension is important in the study of partially ordered groups. In the present paper the notion of a lexicographic extension of a partially ordered group by an AO-group is studied. A result is obtained concerning an AO-group $G$ which is a lexicographic extension of a directed subgroup of $G$.
@article{FPM_2003_9_1_a17,
author = {E. E. Shirshova},
title = {On extensions of {AO-groups}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {277--281},
year = {2003},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a17/}
}
E. E. Shirshova. On extensions of AO-groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 9 (2003) no. 1, pp. 277-281. http://geodesic.mathdoc.fr/item/FPM_2003_9_1_a17/
[1] Kopytov V. M., Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl
[2] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965 | MR
[3] Conrad P., “The lattice of all convex $l$-subgroups of lattice-ordered group”, Czechosl. Math. J., 15 (1965), 101–123 | MR | Zbl
[4] Conrad P., “Representation of partially ordered Abelian groups as groups of real valued functions”, Acta Math., 116 (1966), 199–221 | MR | Zbl
[5] Shirshova E. E., “On extensions of $po$-groups”, Contemporary Mathematics, 131 (1992), 345–353, part 1 | MR | Zbl
[6] Shirshova E. E., “Leksikograficheskie rasshireniya i $pl$-gruppy”, Fundam. i prikl. mat., 1:4 (1995), 1133–1138 | MR | Zbl