The analytic representation of $CR$~functions on the hypersurfaces with singularities
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1069-1090.

Voir la notice de l'article provenant de la source Math-Net.Ru

The validity problem of the analytic representation theorem for $CR$ functions on hypersurfaces $\Gamma$ with singularities is considered. Near singular points of $\Gamma$ the boundary behavior of the functions that giving the analytic representation is investigated.
@article{FPM_2002_8_4_a9,
     author = {S. G. Myslivets},
     title = {The analytic representation of $CR$~functions on the hypersurfaces with singularities},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1069--1090},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a9/}
}
TY  - JOUR
AU  - S. G. Myslivets
TI  - The analytic representation of $CR$~functions on the hypersurfaces with singularities
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1069
EP  - 1090
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a9/
LA  - ru
ID  - FPM_2002_8_4_a9
ER  - 
%0 Journal Article
%A S. G. Myslivets
%T The analytic representation of $CR$~functions on the hypersurfaces with singularities
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1069-1090
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a9/
%G ru
%F FPM_2002_8_4_a9
S. G. Myslivets. The analytic representation of $CR$~functions on the hypersurfaces with singularities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1069-1090. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a9/

[1] Aizenberg L. A., Yuzhakov A. P., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979

[2] Anderson J. T., Cima J. A., “Removable singularities for $\mathcal L^p$ $CR$ functions”, Michigan Math. J., 41 (1994), 111–119 | DOI | MR | Zbl

[3] Andreotti A., Hill C. D., “E. E. Levi convexity and the Hans Lewy problem, I”, Ann. Scuola Norm. Super. Pisa, 26:2 (1972), 325–363 | MR | Zbl

[4] Baouendi M. S., Treves F., “A property of the functions and distributions annihilaited by a locally integrable system of complex vector fields”, Ann. Math., 113 (1981), 387–421 | DOI | MR | Zbl

[5] Bremerman G., Raspredeleniya, kompleksnye peremennye i preobrazovaniya Fure, Mir, M., 1968 | MR | Zbl

[6] Harvey R., Lawson H. B., “On boundaries of complex analytic varieties. I”, Ann. Math., 102 (1975), 223–290 | DOI | MR | Zbl

[7] Kytmanov A. M., “Ob ustranenii osobennostei integriruemykh $CR$-funktsii”, Mat. sbornik, 136:2 (1988), 178–186 | MR | Zbl

[8] Kytmanov A. M., “Golomorfnoe prodolzhenie $CR$-funktsii s osobennostyami na giperpoverkhnosti”, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1320–1330 | MR

[9] Kytmanov A. M., Integral Bokhnera–Martinelli i ego primeneniya, Nauka, Novosibirsk, 1992

[10] Kytmanov A. M., Rea C., “Elimination of $\mathcal L^1$ singularities of Hölder peak sets for $CR$ functions”, Ann. Scuola Norm. Super. Pisa, 22:2 (1995), 211–226 | MR | Zbl

[11] Kytmanov A. M., Myslivets S. G., Tarkhanov N. N., Analytic representation of $CR$ functions on hypersurfaces with singularities, Preprint 99/29, Institut für Mathematik, Universität Potsdam, 1999 | MR

[12] Lupacciolu G., “A theorem on holomorphic extension of $CR$-functions”, Pacific J. Math., 124:1 (1987), 177–191 | MR

[13] Malgranzh B., Idealy differentsiruemykh funktsii, Mir, M., 1968

[14] Merker J., Porten E., “Enveloppe d'holomorphie locale des variétés $CR$ et élimination des singularitiés pour les fonctions $CR$ intégrables”, C. R. Acad. Sci. Paris, Ser. 1, 328 (1999), 853–858 | MR | Zbl

[15] Narasimkhan R., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl

[16] Rabinovich V. S., Schulze B.-W., Tarkhanov N. N., A calculus of boundary value problems in domains with non-Lipschitz singular points, Preprint 9, Univ. Potsdam, 1997 | MR | Zbl

[17] Schulze B.-W., Pseudo-differential boundary problems, conical singularities, and asymptotics, Akademie Verlag, Berlin, 1994

[18] Schulze B.-W., Boundary value problems and singular pseudo-differential operators, J. Wiley, Chichester, 1998 | MR

[19] Stout E. L., “Removable singularities for the boundary values of holomorphic functions”, Proc. of the Mittag-Leffler Institute (1987–1988), Princeton Univ. Press, Princeton, NJ, 1993, 600–629 | MR

[20] Straube E. J., “Harmonic and analytic functions admitting a distrubution boundary value”, Ann. Scuola Norm. Super. Pisa, 11:4 (1984), 559–591 | MR | Zbl

[21] Khenkin G. M., “Metod integralnykh predstavlenii v kompleksnom analize”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 7, VINITI, M., 1985, 23–124 | MR

[22] Chirka E. M., “Analiticheskoe predstavlenie $CR$-funktsii”, Mat. sbornik, 98:4 (1975), 591–623 | MR | Zbl

[23] Chirka E. M., “Potoki i nekotorye ikh primeneniya”, R. Kharvi. Golomorfnye tsepi i ikh granitsy, Mir, M., 1979, 122–155 | MR

[24] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[25] Chirka E. M., Stout E. L., “Removable singularities in the boundary”, Aspects of Mathematics, E26 (1994), 43–104 | MR | Zbl