Optimal recovery of values of smooth functions and their derivatives using inexact information on a segment
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1047-1058
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of recovery of certain function's derivative value at the specified point when the function is smooth, belongs to a specified class and values of this function on a segment are given with an error.
@article{FPM_2002_8_4_a7,
     author = {D. A. Mihalin},
     title = {Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1047--1058},
     year = {2002},
     volume = {8},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/}
}
TY  - JOUR
AU  - D. A. Mihalin
TI  - Optimal recovery of values of smooth functions and their derivatives using inexact information on a segment
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1047
EP  - 1058
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/
LA  - ru
ID  - FPM_2002_8_4_a7
ER  - 
%0 Journal Article
%A D. A. Mihalin
%T Optimal recovery of values of smooth functions and their derivatives using inexact information on a segment
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1047-1058
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/
%G ru
%F FPM_2002_8_4_a7
D. A. Mihalin. Optimal recovery of values of smooth functions and their derivatives using inexact information on a segment. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1047-1058. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/

[1] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[2] Borsuk K., “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–191

[3] Buslaev A. P., O nailuchshem priblizhenii operatora differentsirovaniya, M., 1979

[4] Shoenberg I. J., Cavaretta A. S., “Solution of Landau's problem concerning higher derivatives on the half line”, Proc. of the Intern. Conf. on Construction Function Theory (Golden Sands, Varna, May 19–25, 1970), Publ. House Bulgarian Acad. Sci., Sofia, 1972, 297–308