Optimal recovery of values of smooth functions and their derivatives using inexact information on a segment
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1047-1058
We consider the problem of recovery of certain function's derivative value at the specified point when the function is smooth, belongs to a specified class and values of this function on a segment are given with an error.
@article{FPM_2002_8_4_a7,
author = {D. A. Mihalin},
title = {Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1047--1058},
year = {2002},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/}
}
TY - JOUR AU - D. A. Mihalin TI - Optimal recovery of values of smooth functions and their derivatives using inexact information on a segment JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 1047 EP - 1058 VL - 8 IS - 4 UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/ LA - ru ID - FPM_2002_8_4_a7 ER -
D. A. Mihalin. Optimal recovery of values of smooth functions and their derivatives using inexact information on a segment. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1047-1058. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/
[1] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000
[2] Borsuk K., “Drei Sätze über die $n$-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–191
[3] Buslaev A. P., O nailuchshem priblizhenii operatora differentsirovaniya, M., 1979
[4] Shoenberg I. J., Cavaretta A. S., “Solution of Landau's problem concerning higher derivatives on the half line”, Proc. of the Intern. Conf. on Construction Function Theory (Golden Sands, Varna, May 19–25, 1970), Publ. House Bulgarian Acad. Sci., Sofia, 1972, 297–308