Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1047-1058

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of recovery of certain function's derivative value at the specified point when the function is smooth, belongs to a specified class and values of this function on a segment are given with an error.
@article{FPM_2002_8_4_a7,
     author = {D. A. Mihalin},
     title = {Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1047--1058},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/}
}
TY  - JOUR
AU  - D. A. Mihalin
TI  - Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1047
EP  - 1058
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/
LA  - ru
ID  - FPM_2002_8_4_a7
ER  - 
%0 Journal Article
%A D. A. Mihalin
%T Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1047-1058
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/
%G ru
%F FPM_2002_8_4_a7
D. A. Mihalin. Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1047-1058. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/