Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1047-1058
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of recovery of certain function's derivative value at the specified point when the function is smooth, belongs to a specified class and values of this function on a segment are given with an error.
@article{FPM_2002_8_4_a7,
author = {D. A. Mihalin},
title = {Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1047--1058},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/}
}
TY - JOUR AU - D. A. Mihalin TI - Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 1047 EP - 1058 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/ LA - ru ID - FPM_2002_8_4_a7 ER -
%0 Journal Article %A D. A. Mihalin %T Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment %J Fundamentalʹnaâ i prikladnaâ matematika %D 2002 %P 1047-1058 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/ %G ru %F FPM_2002_8_4_a7
D. A. Mihalin. Optimal recovery of values of smooth functions and their derivatives using inexact information on a~segment. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1047-1058. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a7/