On extremal properties of the dominant eigenvalue
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1019-1034.

Voir la notice de l'article provenant de la source Math-Net.Ru

The property of almost monotonicity for the non-singular irreducible M-matrix is specified. In its existing form the property means that the result of application of the above matrix to a vector is either the zero vector or a vector with at least one component positive and one component negative. In this paper the positive and the negative components are explicitly indicated. As an application, a criterion of Pareto-extremality for a vector function with essentially non-negative matrix of partial derivatives is derived. The criterion is a counterpart of the classical Fermat theorem on vanishing of the derivative in an extremal point of a function. The proofs are based on geometric properties of $n$-dimensional simplex described in two lemmas of independent nature.
@article{FPM_2002_8_4_a5,
     author = {L. I. Krechetov},
     title = {On extremal properties of the dominant eigenvalue},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1019--1034},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a5/}
}
TY  - JOUR
AU  - L. I. Krechetov
TI  - On extremal properties of the dominant eigenvalue
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1019
EP  - 1034
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a5/
LA  - ru
ID  - FPM_2002_8_4_a5
ER  - 
%0 Journal Article
%A L. I. Krechetov
%T On extremal properties of the dominant eigenvalue
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1019-1034
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a5/
%G ru
%F FPM_2002_8_4_a5
L. I. Krechetov. On extremal properties of the dominant eigenvalue. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1019-1034. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a5/

[1] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979 | MR | Zbl

[2] Seneta E., Non-negative matrices, Wiley, New York, 1973 | MR

[3] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR