Existence of the global generalized solution of one-dimensional problem of a~viscous barotropic gas flow
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 993-1007.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to research of the boundary value problem of a viscous barotropic gas flow through a channel of fixed length. The existence theorem of a global generalized solution for the case of nonsmooth data is established.
@article{FPM_2002_8_4_a3,
     author = {K. O. Kazyonkin},
     title = {Existence of the global generalized solution of one-dimensional problem of a~viscous barotropic gas flow},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {993--1007},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a3/}
}
TY  - JOUR
AU  - K. O. Kazyonkin
TI  - Existence of the global generalized solution of one-dimensional problem of a~viscous barotropic gas flow
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 993
EP  - 1007
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a3/
LA  - ru
ID  - FPM_2002_8_4_a3
ER  - 
%0 Journal Article
%A K. O. Kazyonkin
%T Existence of the global generalized solution of one-dimensional problem of a~viscous barotropic gas flow
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 993-1007
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a3/
%G ru
%F FPM_2002_8_4_a3
K. O. Kazyonkin. Existence of the global generalized solution of one-dimensional problem of a~viscous barotropic gas flow. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 993-1007. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a3/

[1] Belov S. Ya., “Razreshimost “v tselom” zadachi protekaniya dlya uravnenii Byurgersa szhimaemoi zhidkosti”, Dinamika sploshnoi sredy, 50, 1981, 3–14 | MR | Zbl

[2] Belov S. Ya., “O zadache protekaniya dlya sistemy uravnenii odnomernogo dvizheniya vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy, 56, 1982, 22–43 | MR | Zbl

[3] Belov S. Ya., “Zadacha o zapolnenii vakuuma vyazkim teploprovodnym gazom”, Dinamika sploshnoi sredy, 59, 1983, 23–38 | MR | Zbl

[4] Vaigant V. A., “Neodnorodnye granichnye zadachi dlya uravnenii vyazkogo teploprovodnogo gaza”, Dinamika sploshnoi sredy, 97, 1990, 3–21 | MR | Zbl

[5] Belov S. Ya., “On the initial-boundary value problems for barotropic motions of a viscous gas in a region with permeable boundaries”, J. Math. Kyoto Univ., 34:2 (1994), 369–389 | MR | Zbl

[6] Amosov A. A., Kazënkin K. O., “Razreshimost “v tselom” odnomernoi zadachi o zapolnenii ob'ëma vyazkim barotropnym gazom s negladkimi dannymi”, Vestnik MEI, 1995, no. 6, 5–21 | MR

[7] Kazënkin K. O., “Edinstvennost obobschënnogo resheniya odnomernoi zadachi o zapolnenii ob'ëma vyazkim barotropnym gazom s negladkimi dannymi”, Vestnik MEI, 1996, no. 6, 71–78

[8] Amosov A. A., Zlotnik A. A., “Razreshimost “v tselom” odnogo klassa kvazilineinykh sistem uravnenii sostavnogo tipa s negladkimi dannymi”, Differents. uravn., 30:4 (1994), 596–608 | MR

[9] Amosov A. A., Zlotnik A. A., “Edinstvennost i ustoichivost obobschënnykh reshenii odnogo klassa kvazilineinykh sistem uravnenii sostavnogo tipa”, Mat. zametki, 55:6 (1994), 13–31 | MR | Zbl

[10] Amosov A. A., Zlotnik A. A., “O kvaziosrednënnykh uravneniyakh odnomernogo dvizheniya vyazkoi barotropnoi sredy s bystro ostsilliruyuschimi dannymi”, ZhVM i MF, 36:2 (1996), 87–110 | MR | Zbl

[11] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Lan, SPb., 1999

[12] Riss F., Sëkefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[13] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl