Hilbert's transformation and $A$-integral
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1239-1243
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that if $g$ is a bounded function, $g\in L^p(\mathbb R)$, $p\ge1$, its Hilbert's transformation $\tilde g$ is also a bounded function, and $f(x)\in L(\mathbb R)$, then $\tilde fg$ is an $A$-integrable function on $\mathbb R$ and $$ (A)\!\int\limits_{\mathbb R}\tilde fg\,dx =-(L)\!\int\limits_{\mathbb R}f\tilde g\,dx. $$
@article{FPM_2002_8_4_a20,
author = {Anter Ali Alsayad},
title = {Hilbert's transformation and $A$-integral},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1239--1243},
year = {2002},
volume = {8},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a20/}
}
Anter Ali Alsayad. Hilbert's transformation and $A$-integral. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1239-1243. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a20/
[1] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR
[2] Ulyanov P. L., “$A$-integral i sopryazhennye funktsii”, Uchenye zapiski Mosk. un-ta. Matematika, 181 (1956), 139–157 | MR
[3] Ulyanov P. L., “Nekotorye voprosy $A$-integrirovaniya”, DAN SSSR, 102:6 (1955), 1077–1080 | MR
[4] Titchmarsh E. C., “On conjugate functions”, Proc. London Math. Soc., 29 (1929), 49–80 | DOI
[5] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR
[6] Stein I., Veis P., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl