Hilbert's transformation and $A$-integral
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1239-1243.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if $g$ is a bounded function, $g\in L^p(\mathbb R)$, $p\ge1$, its Hilbert's transformation $\tilde g$ is also a bounded function, and $f(x)\in L(\mathbb R)$, then $\tilde fg$ is an $A$-integrable function on $\mathbb R$ and $$ (A)\!\int\limits_{\mathbb R}\tilde fg\,dx =-(L)\!\int\limits_{\mathbb R}f\tilde g\,dx. $$
@article{FPM_2002_8_4_a20,
     author = {Anter Ali Alsayad},
     title = {Hilbert's transformation and $A$-integral},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1239--1243},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a20/}
}
TY  - JOUR
AU  - Anter Ali Alsayad
TI  - Hilbert's transformation and $A$-integral
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1239
EP  - 1243
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a20/
LA  - ru
ID  - FPM_2002_8_4_a20
ER  - 
%0 Journal Article
%A Anter Ali Alsayad
%T Hilbert's transformation and $A$-integral
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1239-1243
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a20/
%G ru
%F FPM_2002_8_4_a20
Anter Ali Alsayad. Hilbert's transformation and $A$-integral. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1239-1243. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a20/

[1] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR

[2] Ulyanov P. L., “$A$-integral i sopryazhennye funktsii”, Uchenye zapiski Mosk. un-ta. Matematika, 181 (1956), 139–157 | MR

[3] Ulyanov P. L., “Nekotorye voprosy $A$-integrirovaniya”, DAN SSSR, 102:6 (1955), 1077–1080 | MR

[4] Titchmarsh E. C., “On conjugate functions”, Proc. London Math. Soc., 29 (1929), 49–80 | DOI

[5] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR

[6] Stein I., Veis P., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl