On some properties of partial sums of the Taylor series for the analytical functions in the circle
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1225-1233.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete characterization of the functions belonging to some classes of holomorphic functions in the circle, in terms of modules of Cesaro mean values.
@article{FPM_2002_8_4_a18,
     author = {R. F. Shamoyan},
     title = {On some properties of partial sums of the {Taylor} series for the analytical functions in the circle},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1225--1233},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a18/}
}
TY  - JOUR
AU  - R. F. Shamoyan
TI  - On some properties of partial sums of the Taylor series for the analytical functions in the circle
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 1225
EP  - 1233
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a18/
LA  - ru
ID  - FPM_2002_8_4_a18
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%T On some properties of partial sums of the Taylor series for the analytical functions in the circle
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 1225-1233
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a18/
%G ru
%F FPM_2002_8_4_a18
R. F. Shamoyan. On some properties of partial sums of the Taylor series for the analytical functions in the circle. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 4, pp. 1225-1233. http://geodesic.mathdoc.fr/item/FPM_2002_8_4_a18/

[1] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, Mir, M., 1963

[2] Bennett G., Stegenga D., Timoney R., “Coefficients of Bloch and Lipschitz functions”, Ilin. Math. J., 25:3 (1981) | MR

[3] Djrbashian A., Shamoian F. A., Topics in the theory of $A_{\alpha}^p$ spaces, Teubner Texte zur Math., 105, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1988 | MR | Zbl

[4] Kehe Zhu, “Duality of Bloch spaces and norm convergence of Taylor series”, Mich. Math. J., 38 (1991), 89–101 | DOI | MR | Zbl

[5] Hedenmalm H., Korenblum B., Kehe Zhu, Theory of the Bergman spaces, Springer, 2000 | MR | Zbl

[6] Kislyakov S. V., “Klassicheskaya problematika analiza Fure”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 15, VINITI, M., 1987, 134–195 | MR

[7] Shamoyan R. F., “O predstavlenii lineinykh nepreryvnykh funktsionalov v odnom prostranstve golomorfnykh v kruge funktsii”, Mat., fiz., analiz, geometriya, 1999, no. 3/4, 361–371 | MR | Zbl

[8] Shamoyan R. F., “O multiplikatorakh iz prostranstv tipa Bergmana v prostranstva Khardi v polikruge”, U. M. Zhur., 2000, no. 10, 1405–1415 | MR

[9] Buckley S. M., Koskela P. and Vicotiĉ D., “Fractional integration and weighted Bergman spaces”, Proc. Camb. Society, 1999, 145–160 | MR

[10] Yevtiĉ M., Pavlovič M., “Coefficient multipliers on spaces pf analytic functions”, Acta Sci. Math., 64 (1998), 531–545 | MR

[11] Mateljevič M., Pavlovič M., “Multipliers of $H^p$ and BMOA”, Pacif. J. Math., 146 (1990), 71–89 | MR